The Gateway to Computer Science Excellence
0 votes
34 views
Suppose that you are given a sequence of $n$ elements to sort.The input sequence consists of $n/k$ subsequences, each containing $k$ elements.The elements in a given subsequence are all smaller than the elements in the succeeding subsequence and larger than the elements in the preceding subsequence. Thus, all that is needed to sort the whole sequence of length $n$ is to sort the $k$ elements in each of the $n/k$ sequences Show an $\Omega(n\ lg\ k)$ lower bound on the number of comparisons needed to solve this variant of the sorting problem. (Hint: It is not rigorous to simply combine the lower bounds for the individual subsequences.)
in Algorithms by Boss (42.4k points) | 34 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,324 answers
198,405 comments
105,169 users