# UGCNET-June-2019-II: 1

1.9k views

Consider the poset $( \{3,5,9,15,24,45 \}, \mid).$

Which of the following is correct  for the given poset ?

1. There exist a greatest element and a least element
2. There exist a greatest element but not a least element
3. There exist a least element but not a greatest element
4. There does not exist a greatest element and a least element

edited

There are two maximal elements $24$ and $45$.

There are two minimal elements $5$ and $3$.

So there is no greatest and least element.

$\therefore$ Option $4.$ is correct.

edited
0
Can there ever be two greatest elements?
2
No....because we can't compare  them. there can be many maximal elements but only one maximum element.

1-We can not choose here greatest element because two maximal element(24,45 are at same level in Hasse diagram) are there.                                                                                                                                                                                                                              2-We can not choose here least element because two minimal element(3,5 are at same level in Hasse diagram) are there.                                                                                                                                                                                                                                          So: Option 4 is correct.

edited
–1 vote
C is correct answer because there exists LCM(A,B) FOR all a,b belongs to the set

## Related questions

1 vote
1
1.3k views
Find the zero-one matrix of the transitive closure of the relation given by the matrix $A$ : $A =\begin{bmatrix} 1 & 0& 1\\ 0 & 1 & 0\\ 1& 1& 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 1& 1\\ 0 & 1 & 0\\ 1& 1& 1 \end{bmatrix}$ ... $\begin{bmatrix} 1 & 1& 1\\ 0 & 1 & 0\\ 1& 0& 1 \end{bmatrix}$
1 vote
Consider the following statements: $S_1$: For any integer $n>1, \: a^{\phi(n)} \equiv 1(mod \: n)$ for all $a \in Z_n^*$ , where $\phi(n)$ is Euler’s phi function. $S_2$: If $p$ is prime, then $a^p \equiv 1(mod \: p)$ for all $a \in Z_p^*$. Which one of the following is/are correct? Only $S_1$ Only $S_2$ Both $S_1$ and $S_2$ Neither $S_1$ nor $S_2$
How many different Boolean functions of degree $n$ are the $2^{2^n}$ $(2^2)^n$ $2^{2^n} -1$ $2^n$
How many ways are there to place $8$ indistinguishable balls into four distinguishable bins? $70$ $165$ $^8C_4$ $^8P_4$