The Gateway to Computer Science Excellence
+7 votes
772 views

Consider the poset $( \{3,5,9,15,24,45 \}, \mid).$

Which of the following is correct  for the given poset ?

  1. There exist a greatest element and a least element
  2. There exist a greatest element but not a least element
  3. There exist a least element but not a greatest element
  4. There does not exist a greatest element and a least element
in Set Theory & Algebra by Veteran (431k points)
edited by | 772 views

3 Answers

+8 votes
Best answer

There are two maximal elements $24$ and $45$.

There are two minimal elements $5$ and $3$.

So there is no greatest and least element.

$\therefore$ Option $4.$ is correct.

by Boss (23.8k points)
edited by
0
Can there ever be two greatest elements?
+2
No....because we can't compare  them. there can be many maximal elements but only one maximum element.
+3 votes

   1-We can not choose here greatest element because two maximal element(24,45 are at same level in Hasse diagram) are there.                                                                                                                                                                                                                              2-We can not choose here least element because two minimal element(3,5 are at same level in Hasse diagram) are there.                                                                                                                                                                                                                                          So: Option 4 is correct.

by (263 points)
edited by
–1 vote
C is correct answer because there exists LCM(A,B) FOR all a,b belongs to the set
by (47 points)
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,275 answers
198,154 comments
104,818 users