# TIFR-2015-Maths-B-4

1 vote
61 views

Let $U_{1}\supset U_{2} \supset...$ be a decreasing sequence of open sets in Euclidean $3$-space $\mathbb{R}^{3}$. What can we say about the set $\cap U_{i}$ ?

1. It is infinite.
2. It is open.
3. It is non-empty.
4. None of the above.

## Related questions

1 vote
1
115 views
Let $(X, d)$ be a path connected metric space with at least two elements, and let $S=\left\{d(x, y):x, y \in X\right\}$. Which of the following statements is not necessarily true ? $S$ is infinite. $S$ contains a non-zero rational number. $S$ is connected. $S$ is a closed subset of $\mathbb{R}$
Let $X=\left\{(x, y) \in \mathbb{R}^{2}: 2x^{2}+3y^{2}= 1\right\}$. Endow $\mathbb{R}^{2}$ with the discrete topology, and $X$ with the subspace topology. Then. $X$ is a compact subset of $\mathbb{R}^{2}$ in this topology. $X$ is a connected subset of $\mathbb{R}^{2}$ in this topology. $X$ is an open subset of $\mathbb{R}^{2}$ in this topology. None of the above.
Let $n \geq 1$ and let $A$ be an $n \times n$ matrix with real entries such that $A^{k}=0$, for some $k \geq 1$. Let $I$ be the identity $n \times n$ matrix. Then. $I+A$ need not be invertible. Det $(I+A)$ can be any non-zero real number. Det $(I+A) = 1$ $A^{n}$ is a non-zero matrix.
Let $d(x, y)$ be the usual Euclidean metric on $\mathbb{R}^{2}$. Which of the following metric spaces is complete? $\mathbb{Q}^{2}\subset\mathbb{R}^{2}$ with the metric $d(x, y)$. $[0, 1]\times [0, \infty)\subset \mathbb{R}^{2}$ ... $[0, 1]\times [0, 1) \subset \mathbb{R}^{2}$ with the metric $d''(x, y) = \min \left \{ 1, d(x, y) \right \}$.