930 views
5 votes
5 votes

Let $n \geq 1$ and let $A$ be an $n \times n$ matrix with real entries such that $A^{k}=0$, for some $k \geq 1$. Let $I$ be the identity $n \times n$ matrix. Then.

  1. $I+A$ need not be invertible.
  2. Det $(I+A)$ can be any non-zero real number.
  3. Det $(I+A) = 1$
  4. $A^{n}$ is a non-zero matrix.

2 Answers

4 votes
4 votes

By cayley hamilton theorem

A^n = 0  so 
$\lambda ^n = 0$
 solving for $\lambda$  we get 0 for every eigen value 
now by properties of Eigen value 
Eigen values of $(A+I)$ = Individual Eigen value of A+1

so the eigen values of (A+I) all are 1
so Det(I+A) =1

Option  C  is the Answer 
 

4 votes
4 votes

$A^k = 0$ means $A$ is a Nilpotent Matrix.

And all eigen values of a Nilpotent Matrix are $0$. So All, Eigen values of $(I+A)$ are $1$. So $\tt det(I+A)$ = Product of eigen values $= 1$

This can be seen from an example : Let  $A = \begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}$

$I+ A = \begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}$

So, $det(I+A) = 1$

Answer:

Related questions

5 votes
5 votes
2 answers
1
makhdoom ghaya asked Dec 19, 2015
684 views
Let $A$ be the $2 \times 2$ matrix $\begin{pmatrix}\sin\frac{\pi}{18}&-\sin \frac{4\pi}{9} \\\sin \frac{4\pi}{9}&\sin \frac {\pi}{18}\end{pmatrix}$. Then the smallest num...
7 votes
7 votes
2 answers
3