# Ullman (TOC) Edition 3 Exercise 9.5 Question 1 (Page No. 418)

33 views
Let $L$ be the set of (codes for) context-free grammars $G$ such that $L(G)$ contains at least one palindrome. Show that $L$ is undecidable. Hint: Reduce PCP to $L$ by constructing, from each instance of PCP a grammar whose language contains a palindrome if and only if the PCP instance has a solution.

## Related questions

1 vote
1
132 views
It is undecidable whether the complement of a CFL is also a CFL. Exercise $9.5.2$ can be used to show it is undecidable whether the complement of a CFL is regular, but that is not the same thing. To prove our initial claim, we need to define a different language that ... $7.2.5(b)$.
Show that the language $\overline{L_A}\cup \overline{L_B}$ is a regular language if and only if it is the set of all strings over its alphabet;i.e., if and only if the instance $(A,B)$ of PCP has no solution. Thus, prove that it is ... closed under inverse homomorphism, complementation and the pumping lemma for regular sets to show that $\overline{L_A}\cup \overline{L_B}$ is not regular.
In this exercise, we shall show that for every context-free language $L$ containing at least one string other than $\in,$there is a $CFG$ in Greibach normal form that generates $L-\in.$ Recall that a Greibach normal form $(GNF)$ grammar is one where every production body starts with a terminal. ... $,$ down to $A_{1}$ using part $(a).$ Then fi x the $B_{i}$ productions in any order , again $(a).$
Provide the inductive proofs needed to complete the following theorems$:$ The part of Theorem $7.4$ where we show that discovered symbols really are generating. Both directions of Theorem $7.6$ where we show the correctness of the algorithm in Section $7.1.2$ for detecting the reachable symbols. The part of Theorem $7.11$ where we show that all pairs discovered really are unit pairs.