recategorized by
487 views
0 votes
0 votes

If the co-efficient of $p^{th}, (p+1)^{th}$ and $(p+2)^{th}$ terms in the expansion of $(1+x)^n$ are in Arithmetic Progression (A.P.), then which one of the following is true?

  1. $n^2+4(4p+1)+4p^2-2=0$
  2. $n^2+4(4p+1)+4p^2+2=0$
  3. $(n-2p)^2=n+2$
  4. $(n+2p)^2=n+2$
recategorized by

1 Answer

2 votes
2 votes

We know that $(1+x)^n =\sum_{k\geq 0}^{n} \begin{pmatrix} n \\ k \end{pmatrix}x^n$ .

The expansion consists of $(n+1)$ terms, the coefficient of the $m^{th}$ term being $\begin{pmatrix} n \\ m-1 \end{pmatrix}$.

Since the coefficients of $p^{th}, (p+1)^{th}$ and $(p+2)^{th}$ terms are in A.P,

 

$\therefore$ $\begin{pmatrix} n\\ p-1 \end{pmatrix} + \begin{pmatrix} n \\ p+1 \end{pmatrix} = 2\begin{pmatrix} n \\ p \end{pmatrix}$

 

$\Rightarrow \frac{\not{n!}}{(n-p+1)! (p-1)!} + \frac{\not{n!}}{(n-p-1)!(p+1)!} = \frac{2\not{n!}}{(n-p)!p!}$

 

$\Rightarrow \frac{(p+1)p + (n-p+1)(n-p)}{(n-p+1)!(p+1)!} =\frac{2}{(n-p)!p!}$

 

$\Rightarrow \frac{(p+1)p + (n-p+1)(n-p)}{(n-p+1)(p+1)} = 2$

 

$\Rightarrow (p+1)p + (n-p+1)(n-p) = 2(n-p+1)(p+1)$

 

Solving this equation we get

 

$(n-2p)^2 =n+2$

 

Hence, the correct option is (C).

 

Related questions

0 votes
0 votes
1 answer
1
gatecse asked Sep 18, 2019
375 views
$\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$ is$2$$1$$\infty$not a convergent series
3 votes
3 votes
2 answers
2
gatecse asked Sep 18, 2019
668 views
The digit in the unit place of the number $7^{78}$ is$1$$3$$7$$9$
1 votes
1 votes
0 answers
3
gatecse asked Sep 18, 2019
380 views
The sum of $99^{th}$ power of all the roots of $x^7-1=0$ is equal to$1$$2$$-1$$0$