recategorized by
349 views
0 votes
0 votes

The value of $\underset{n \to \infty}{\lim} \bigg( \dfrac{1}{1-n^2} + \dfrac{2}{1-n^2} + \dots + \dfrac{n}{1-n^2} \bigg)$  is

  1. $0$
  2. $ – \frac{1}{2}$
  3. $\frac{1}{2}$
  4. none of these
recategorized by

1 Answer

1 votes
1 votes

Correct Answer - Option (B)

let $L = \underset{n \to \infty}{\lim}\bigg( \frac{1}{1-n^2} + \frac{2}{1-n^2} +\frac{3}{1-n^2} + \frac{4}{1-n^2}  + ... + \frac{n}{1-n^2}\bigg) $

taking $(1 - n^2)$ common, 

$L = \underset{n \to \infty}{\lim}\bigg( \frac{1}{1-n^2} \cdot (1 + 2 + 3 + ...+n) \bigg) $

Now, sum of first $n$ natural numbers is $\frac{n(n+1)}{2}$ so substituting,

$L = \underset{x \to \infty}{\lim} \bigg( \frac{n(n+1)}{2} \cdot \frac{1}{(1-n)(1+n)}\bigg) = \frac{1}{2} \cdot \underset{x \to \infty}{\lim} \bigg( \frac{n}{1-n} \bigg)$

By L' Hopital's rule,

$\underset{x \to \infty}{\lim} \bigg( \frac{n}{1-n} \bigg) = \underset{x \to \infty}{\lim} \bigg( \frac{1}{-1} \bigg) = -1$

Hence, $L = - \frac{1}{2}$

Related questions

0 votes
0 votes
0 answers
1
gatecse asked Sep 18, 2019
329 views
The limit of the sequence $\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$ is$1$$2$$2\sqrt{2}$$\infty$
2 votes
2 votes
1 answer
2
gatecse asked Sep 18, 2019
415 views
If $2f(x)-3f(\frac{1}{x})=x^2 \: (x \neq0)$, then $f(2)$ is$\frac{2}{3}$$ – \frac{3}{2}$$ – \frac{7}{4}$$\frac{5}{4}$
0 votes
0 votes
1 answer
3
gatecse asked Sep 18, 2019
520 views
Let $f(x) = \dfrac{x-1}{x+1}, \: f^{k+1}(x)=f\left(f^k(x)\right)$ for all $k=1, 2, 3, \dots , 99$. Then $f^{100}(10)$ is$1$$10$$100$$101$
1 votes
1 votes
2 answers
4
gatecse asked Sep 18, 2019
324 views
If $f(x)=e^{5x}$ and $h(x)=f’’(x)+2f’(x)+f(x)+2$ then $h(0)$ equals$38$$8$$4$$0$