recategorized by
276 views

1 Answer

2 votes
2 votes
The given equation can also be written as:

$\tan^{-1}(x-1) + \tan^{-1}(x+1) = \tan^{-1}(3x) - \tan^{-1}(x)\tag{1}$

We know that:
$\scriptsize{\mathrm{\tan^{-1} A + \tan^{-1} B = \tan^{-1}\bigg(\frac{A + B}{1-AB}\bigg ),tan^{-1}A - tan^{-1}B = tan^{-1}\bigg (\frac{A-B}{1+AB}\bigg)}}\tag{2}$

Let $\mathrm{A = x-1, B = x + 1}$

Now, On applying the above formula:

$\scriptsize {\begin{align} \tan^{-1}(x-1) + \tan^{-1}(x+1) &= \tan^{-1}\bigg(\frac{x-1+x+1}{1-(x-1)(x+1)} \bigg)\\ &=\tan^{-1}\frac{2x}{1-x^2+1}\\&=\tan^{-1}\frac{2x}{2-x^2}\end {align}}$

Similarly,

$\scriptsize{\begin{align} \tan^{-1}3x-\tan^{-1}x &= \tan^{-1}\bigg (\frac{3x-x}{1+3x(x)}\bigg )\\&= \tan^{-1}\bigg (\frac{2x}{1+3x^2}\bigg )\tag{3} \\&\text{From $(1)$, $(2)$ and $(3)$}\\&=\tan^{-1}\bigg (\frac{2x}{2-x^2}\bigg )\tag{4} \end{align}}$

Now, on comparing both the sides, in equations $(3)$ and $(4)$, we get:

$\begin{align} \frac{2x}{1+3x^2} = \frac{2x}{2-x^2} \Rightarrow 2-x^2 = 1 + 3x^2 \Rightarrow 1 = 4x^2 \Rightarrow x = \pm \sqrt{\frac{1}{2}}\end {align}$

$\therefore$ We have $2$ roots.

Hence, $\bf{B}$ is the correct option.
edited by

Related questions

3 votes
3 votes
2 answers
1
gatecse asked Sep 18, 2019
532 views
The value of $\dfrac{1}{\log_2 n}+ \dfrac{1}{\log_3 n}+\dfrac{1}{\log_4 n}+ \dots + \dfrac{1}{\log_{2017} n}\:\:($ where $n=2017!)$ is$1$$2$$2017$none of these
0 votes
0 votes
2 answers
2
gatecse asked Sep 18, 2019
393 views
The area of the shaded region in the following figure (all the arcs are circular) is$\pi$$2 \pi$$3 \pi$$\frac{9}{8} \pi$
0 votes
0 votes
1 answer
3
gatecse asked Sep 18, 2019
339 views
The sum of the squares of the roots of $x^2-(a-2)x-a-1=0$ becomes minimum when $a$ is$0$$1$$2$$5$
1 votes
1 votes
3 answers
4
gatecse asked Sep 18, 2019
478 views
If $x,y,z$ are in $A.P.$ and $a>1$, then $a^x, a^y, a^z$ are in$A.P.$$G.P$$H.P$none of these