search
Log In
2 votes
111 views

If  $\begin{vmatrix} 10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14! \end{vmatrix} = k(10!)(11!)(12!)$, then the value of $k$ is

  1. $1$
  2. $2$
  3. $3$
  4. $4$
in Linear Algebra
recategorized by
111 views

2 Answers

0 votes
take 10! common from first row, 11! common from second row and 12! common from the third row.

now apply elementary operation R3 --> R3-R2 after that R2-->R2-R1.now get the value from the newly formed determinant.  after solving the determinant we will get determinant= 2. by comparing we can say that k=2.
0 votes

$\begin{vmatrix} 10! &11! &12! \\ 11! & 12! & 13!\\ 12! &13! & 14! \end{vmatrix}$

$\begin{vmatrix} 10! &11.10! &12.11.10! \\ 11! & 12.11! & 13.12.11!\\ 12! &13.12! & 14.13.12! \end{vmatrix}$

Taking 10! common from R1, 11! from R2, 12! from R3.

(10!)(11!)(12!) $\begin{vmatrix} 1 &11 &12.11 \\ 1 & 12 & 13.12\\ 1 &13 & 14.13 \end{vmatrix}$

R2→ R2 – R1

R3→ R3 – R2

(10!)(11!)(12!) $\begin{vmatrix} 1 &11 &12.11 \\ 0 & 1 & 24\\ 0 &1& 26 \end{vmatrix}$

R3→ R3 – R2

(10!)(11!)(12!)$\begin{vmatrix} 1 &11 &12.11 \\ 0 & 1 & 24\\ 0 &0& 2 \end{vmatrix}$

2(10!)(11!)(12!). Therefore, K=2.


edited by

Related questions

0 votes
1 answer
1
146 views
If $f(x) = \begin{vmatrix} 2 \cos ^2 x & \sin 2x & – \sin x \\ \sin 2x & 2 \sin ^2 x & \cos x \\ \sin x & – \cos x & 0 \end{vmatrix},$ then $\int_0^{\frac{\pi}{2}} [ f(x) + f’(x)] dx$ is $\pi$ $\frac{\pi}{2}$ $0$ $1$
asked Sep 18, 2019 in Linear Algebra gatecse 146 views
1 vote
1 answer
2
122 views
If $A$ is a $3 \times 3$ matrix satisfying $A^3 – A^2 +A-I= O$ (where $O$ is the zero matrix and $I$ is the identity matrix) then the value of $A^4$ is $A$ $O$ $I$ none of these
asked Sep 18, 2019 in Linear Algebra gatecse 122 views
0 votes
0 answers
3
154 views
If $\alpha, \beta$ and $\gamma$ are the roots of $x^3-px+q=0$, then the value of the determinant $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$ is $p$ $p^2$ $0$ $p^2+6q$
asked Sep 15, 2018 in Linear Algebra jothee 154 views
3 votes
2 answers
4
485 views
If $\alpha, \beta$ and $\gamma$ are the roots of $x^3 - px +q = 0$, then the value of the determinant $\begin{vmatrix}\alpha & \beta & \gamma\\\beta & \gamma & \alpha\\\gamma & \alpha & \beta\end{vmatrix}$ is $p$ $p^2$ $0$ $p^2+6q$
asked Mar 28, 2018 in Linear Algebra jjayantamahata 485 views
...