recategorized by
338 views

1 Answer

1 votes
1 votes

Let $\alpha,  \beta$ are the roots of the given equation.

Then $\alpha + \beta = a-2$, $\alpha. \beta= 1-a$

$(\alpha + \beta)^2= \alpha^2 + \beta^2 + 2 \alpha \beta$

$(a-2)^2= \alpha^2 + \beta^2 + 2 - 2a$

$\alpha^2 + \beta^2= a^2 -2a +2= x$(let)

We have to minimize $x$, differentiating $x$ wrt to $a$

$\frac{dx}{da} = 2a-2 = 0, a=1$

$\frac{d^2 x} {d a^2} = 2 > 0$(minima)

So for $a=1$, $x$ will be minimum.

Hence option B) is correct

edited by

Related questions

0 votes
0 votes
1 answer
2
gatecse asked Sep 18, 2019
529 views
Let $x^2-2(4k-1)x+15k^2-2k-7>0$ for any real value of $x$. Then the integer value of $k$ is$2$$4$$3$$1$
1 votes
1 votes
1 answer
3
gatecse asked Sep 18, 2019
455 views
If $\alpha$ and $\beta$ be the roots of the equation $x^2+3x+4=0$, then the equation with roots $(\alpha + \beta)^2$ and $(\alpha – \beta)^2$ is$x^2+2x+63=0$$x^2-63x+2=...
0 votes
0 votes
1 answer
4
gatecse asked Sep 18, 2019
239 views
If $r$ be the ratio of the roots of the equation $ax^{2}+bx+c=0,$ then $\frac{r}{b}=\frac{r+1}{ac}$$\frac{r+1}{b}=\frac{r}{ac}$$\frac{(r+1)^{2}}{r}=\frac{b^{2}}{ac}$$\lef...