recategorized by
251 views

1 Answer

0 votes
0 votes

Answer: $\mathbf B$

Solution:

Given:$$\sin^6\frac{\pi}{81}+\cos^6\frac{\pi}{81} -1 + 3\sin^2\frac{\pi}{81}.\cos^2\frac{\pi}{81} \tag{i}$$

Now,

$\sin^6\frac{\pi}{81} = \left(\sin^2\frac{\pi}{81}\right)^3,\; \text{and}\;\cos^6\frac{\pi}{81} = \left (\cos^2\frac{\pi}{81}\right)^3 \tag{ii}$

Using identity: $a^3 + b^3 = (a+b)^3 -3ab(a+b)\tag{iii}$

and, $\sin^2\theta + \cos^2\theta = 1\tag{iv}$

Using equations $\;\mathrm{(ii)\;, (iii)\;and\;(iv)}$, we get:

$\sin^6\frac{\pi}{81}+\cos^6\frac{\pi}{81}=\left(\sin^2\frac{\pi}{81}\right)^3 + \left(\cos^2\frac{\pi}{81}\right)^3$

$ = \underbrace{\sin^2\frac{\pi}{81} + \cos^2\frac{\pi}{81}}_\text{=1} -3\sin^2\frac{\pi}{81}.\cos^2\frac{\pi}{81}\left(\underbrace{\sin^2\frac{\pi}{81} + \cos^2\frac{\pi}{81}}_\text{=1}\right) $

$= 1 - 3\sin^2\frac{\pi}{81}.\cos^2\frac{\pi}{81} \tag{v}$

From equations $\mathrm {(i)\;and\;(v)}$, we get:

$ \require{cancel} = \cancel {1} - \cancel{3\sin^2\frac{\pi}{81}.\cos^2\frac{\pi}{81}} -\cancel{1} + \cancel{3\sin^2\frac{\pi}{81}.\cos^2\frac{\pi}{81}}\\ = \mathbf 0$

$\therefore \mathbf B$ is the correct answer.

edited by
Answer:

Related questions

0 votes
0 votes
2 answers
1
gatecse asked Sep 18, 2019
450 views
If $\tan\: x=p+1$ and $\tan\; y=p-1,$ then the value of $2\:\cot\:(x-y)$ is$2p$$p^{2}$$(p+1)(p-1)$$\frac{2p}{p^{2}-1}$
0 votes
0 votes
0 answers
2
gatecse asked Sep 18, 2019
286 views
The equations $x=a\cos\theta+b\sin\theta$ and $y=a\sin\theta+b\cos\theta,(0\leq\theta\leq2\pi$ and $a,b$ are arbitrary constants$)$ representa circlea parabolaan ellipsea...
0 votes
0 votes
0 answers
3
gatecse asked Sep 18, 2019
349 views
If in a $\triangle ABC,\angle B=\dfrac{2\pi}{3},$ then $\cos A+\cos C$ lies in$\left[\:-\sqrt{3},\sqrt{3}\:\right]$$\left(\:-\sqrt{3},\sqrt{3}\:\right]$$\left(\:\frac{3}{...
0 votes
0 votes
0 answers
4
gatecse asked Sep 18, 2019
189 views
The number of values of $x$ for which the equation $\cos x=\sqrt{\sin x}-\frac{1}{\sqrt{\sin x}}$ is satisfied is $1$$2$$3$more than $3$