recategorized by
222 views

1 Answer

1 votes
1 votes
Answer: $B$

Given: $$\underset{x\rightarrow-1}\lim\frac{1+\sqrt[3]{x}}{1+\sqrt[5]{x}}\qquad \to(1)$$

Applying L'Hospital's Rule in $(1)$, we get:

 $$=\underset{x\rightarrow-1}\lim\frac{\frac{dy}{dx}\Big(1+\sqrt[3]{x}\Big)}{\frac{dy}{dx}\Big(1+\sqrt[5]{x}\Big)}$$

$$=\underset{x\rightarrow-1}\lim\frac{\frac{dy}{dx}\Big(1+x^{\frac{1}{3}}\Big)}{\frac{dy}{dx}\Big(1+x^{\frac{1}{5}}\Big)}$$

$$=\underset{x\rightarrow-1}\lim\frac{\frac{1}{3}x^{\Big(1-\frac{1}{3}\Big)}}{\frac{1}{5}x^{\Big(1-\frac{1}{5}\Big)}} $$

$$= \underset{x\rightarrow-1}\lim\frac{\frac{1}{3}x^{\frac{2}{3}}}{\frac{1}{5}x^{\frac{4}{5}}}$$

$$=\underset{x\rightarrow-1}\lim\frac{\frac{1}{3}x^{2.{\frac{1}{3}}}}{\frac{1}{5}x^{4{.\frac{1}{5}}}} $$

Now, substitute $x = -1$ above, since $x^2\;and \; x^4$ terms have even powers and anything raised to power $1$ is $1$, so the equation reduces to:

$$= \frac{\frac{1}{3}} {\frac{1}{5}} = \frac{5}{3}$$

$\therefore B$ is the right answer.
edited by

Related questions

0 votes
0 votes
1 answer
1
gatecse asked Sep 18, 2019
244 views
$\underset{x\rightarrow 1}{\lim}\dfrac{x^{\frac{1}{3}}-1}{x^{\frac{1}{4}}-1}$ equals$\frac{4}{3}$$\frac{3}{4}$$1$None of these
0 votes
0 votes
0 answers
2
gatecse asked Sep 18, 2019
226 views
$\underset{x\rightarrow 0}{\lim}x\sin\left(\dfrac{1}{x}\right)$ equals$-1$$0$$1$Does not exist
0 votes
0 votes
0 answers
3
gatecse asked Sep 18, 2019
239 views
$\underset{x\rightarrow 0}{\lim}\sin\left(\dfrac{1}{x}\right)$ equals$-1$$0$$1$Does not exist
0 votes
0 votes
1 answer
4
gatecse asked Sep 18, 2019
313 views
$\underset{x\rightarrow \infty}{\lim} \left(1+\dfrac{1}{x^{2}}\right)^{x}$ equals$-1$$0$$1$Does not exist