retagged by
409 views
1 votes
1 votes

Let $I=\int(\sin\:x-\cos\:x)(\sin\:x+\cos\:x)^{3}dx$ and $K$ be a constant of integration. Then the value of $I$ is

  1. $(\sin\:x+\cos\:x)^{4}+K$
  2. $(\sin\:x+\cos\:x)^{2}+K$
  3. $-\frac{1}{4}(\sin\:x+\cos\:x)^{4}+K$
  4. None of these
retagged by

1 Answer

Best answer
1 votes
1 votes

Answer :  C

 

$I = \int \left ( \sin x - \cos x \right )\left (\sin x + \cos x \right )^{3}dx$

$I = \int \left ( \sin x - \cos x \right )\left (\sin x + \cos x \right )\left (\sin x + \cos x \right )^{2}dx$

$I = \int \left (\sin ^{2}x - \cos^{2} x \right )\left (\sin x + \cos x \right )^{2}dx$

$I = - \int \left (\cos^{2} x - \sin ^{2}x \right )\left (\sin^{2} x + \cos^{2} x + 2 \sin x \cos x \right )dx$

$I = - \int \left (\cos 2x \right )\left (1 + \sin 2x \right )dx$

 

$Let \: 1 + \sin 2x = t$

$Then \: \cos 2x \, dx \: = \: \frac{dt}{2}$

 

$I = -\int t\: \frac{dt}{2}$

$I = \frac{-\:t^{2}}{4} + K$

$I = \frac{-\: \left ( 1\:+\:\sin 2x \right )^{2}}{4} + K$

$I = \frac{-\: \left ( \sin^2x \:+ \:\cos^2x \:+\: 2\sin x \cos x \right )^{2}}{4} + K$

$I = \frac{-\: \left ( \sin x \:+\: \cos x \right)^{4}}{4} + K$

 

edited by

Related questions

0 votes
0 votes
1 answer
1
gatecse asked Sep 18, 2019
409 views
The Taylor series expansion of $f(x)=\ln(1+x^{2})$ about $x=0$ is$\sum_{n=1}^{\infty}(-1)^{n}\frac{x^{n}}{n}$$\sum_{n=1}^{\infty}(-1)^{n+1}\frac{x^{2n}}{n}$$\sum_{n=1}^{\...
0 votes
0 votes
1 answer
3
gatecse asked Sep 18, 2019
270 views
The general solution of the differential equation $2y{y}'-x=0$ is (assuming $C$ as an arbitrary constant of integration)$x^{2}-y^{2}=C$$2x^{2}-y^{2}=C$$2y^{2}-x^{2}=C$$x^...
0 votes
0 votes
1 answer
4
gatecse asked Sep 18, 2019
260 views
The general solution of the differential equation $x+y-x{y}'=0$ is (assuming $C$ as an arbitrary constant of integration)$y=x(\log x+C)$$x=y(\log y+C)$$y=x(\log y+C)$$y=y...