edited by
439 views
2 votes
2 votes

The value of $\underset{x \to 0}{\lim} \dfrac{\tan^{2}\:x-x\:\tan\:x}{\sin\:x}$ is

  1. $\frac{\sqrt{3}}{2}$
  2. $\frac{1}{2}$
  3. $0$
  4. None of these
edited by

2 Answers

Best answer
3 votes
3 votes

Answer: $\mathbf C$

Solution:

Let $$\mathrm {I = \underset{x\to0}{\lim}\frac{\tan^2x - x\tan x}{\sin x}}$$

On substituting $\mathrm x = 0$, we can see that this integral is of the form, $\color {blue} {\mathbf{\frac{0}{0}}}$ i.e., $\color {blue} {\text {indeterminate form}}$

So, we can apply l'hospital's rule:

$$\therefore \mathrm {I = \underset{x\to0}{\lim}\frac{\frac{d}{dx}(\tan^2x-x\tan x)}{\frac{d}{dx}\sin x} }$$

$$\mathrm {\;\;\left(\because \frac{d}{dx}\tan x = \sec^2x,\; \frac{d}{dx}\cos x = \sin x\right)}$$

$$\mathrm {\Rightarrow \mathrm I = \underset{x \to 0}{\lim}\frac{\left (2\tan x \sec^2 x-(x.\sec^2x + 1.\tan x) \right)}{\cos x}}$$

$$\mathrm {\Rightarrow \mathrm I = \underset {x \to 0}{\lim}\left \{\left (2\frac{\sin x}{\cos x}.\frac{1}{\cos^2x} - \left(\frac{x}{\cos^2x}+\frac{\sin x}{\cos x}\right)\right)\right \}.\frac{1}{\cos x}}$$

Now, substitute $\mathrm x = 0$, we get:

$$\left (\text{Also}\;\because \cos 0 = 1, \;\sin 0 = 0\right)$$

$$\therefore \mathrm I = 0$$

Answer: $\therefore \mathbf C$ is the correct option.

edited by

Related questions

0 votes
0 votes
1 answer
1
gatecse asked Sep 18, 2019
243 views
$\underset{x\rightarrow 1}{\lim}\dfrac{x^{\frac{1}{3}}-1}{x^{\frac{1}{4}}-1}$ equals$\frac{4}{3}$$\frac{3}{4}$$1$None of these
0 votes
0 votes
1 answer
2
gatecse asked Sep 18, 2019
219 views
$\underset{x\rightarrow-1}{\lim}\dfrac{1+\sqrt[3]{x}}{1+\sqrt[5]{x}}$ equals$\frac{3}{5}$$\frac{5}{3}$$1$$\infty$
0 votes
0 votes
0 answers
3
gatecse asked Sep 18, 2019
225 views
$\underset{x\rightarrow 0}{\lim}x\sin\left(\dfrac{1}{x}\right)$ equals$-1$$0$$1$Does not exist
0 votes
0 votes
0 answers
4
gatecse asked Sep 18, 2019
238 views
$\underset{x\rightarrow 0}{\lim}\sin\left(\dfrac{1}{x}\right)$ equals$-1$$0$$1$Does not exist