recategorized by
406 views

2 Answers

2 votes
2 votes

Answer: $\textbf C$

Let, $\alpha, \beta$ be the roots of the given equation, then we know that:

$\text{Sum of roots} \;\mathrm{=\alpha + \beta = \frac{-b}{a} }\tag{1}$

$\text{Product of roots}\;\mathrm{ = \alpha.\beta = \frac{c}{a}}\tag{2}$

$\mathbf{It \;is\; given\; that:}\;\frac{\alpha}{ \beta} = r \Rightarrow \alpha = r\beta \tag{3}$

Substituting $(3)$ in $(1)$, we get:

$\mathrm {r\beta + \beta = \frac{-b}{a}  \Rightarrow \beta(r+1) = \frac{-b}{a} \Rightarrow \beta=\frac{-b}{a(r+1)} }\tag{4}$
From $(2)$ and $(3)$, we get:

$\mathrm{=r\beta^2 = \frac{c}{a}}$

$\mathrm {\Rightarrow \frac{b^2}{a^2(r+1)^2}r=\frac{c}{a}}$

On simplifying, we get:

$\mathrm{\frac{(r+1)^2}{r} = \frac{b^2}{ac}}$

$\therefore \mathbf C$ is the correct answer.

edited by
0 votes
0 votes

We know the solution to the standard quadratic equation $ax^2+bx+c=0$ that
$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$. So the roots are $\frac{-b+\sqrt{b^2-4ac}}{2a}$ and $\frac{-b-\sqrt{b^2-4ac}}{2a}$.

 

According to the question,

$$\begin{align}\frac{\frac{-b+\sqrt{b^2-4ac}}{2a}}{\frac{-b-\sqrt{b^2-4ac}}{2a}}& =r \\ \Rightarrow \frac{-b+\sqrt{b^2-4ac}}{-b-\sqrt{b^2-4ac}} &=r \\ \Rightarrow \frac{2\sqrt{b^2-4ac}}{-2b} &=\frac{r-1}{r+1};~[\text{Dividendo-Compendo}] \\ \Rightarrow \frac{b^2-4ac}{b^2} &=\frac{(r-1)^2}{(r+1)^2};~[\text{Squaring both sides}]\\ \Rightarrow 1- \frac{4ac}{b^2}&= \frac{(r-1)^2}{(r+1)^2}\\ \Rightarrow 1-\frac{(r-1)^2}{(r+1)^2} &= \frac{4ac}{b^2}\\ \Rightarrow \frac{4r}{(r+1)^2}&=\frac{4ac}{b^2}; ~[\because (r+1)^2-(r-1)^2=r^2+2r+1-(r^2-2r+1)=4r]\\ \therefore \frac{(r+1)^2}{r}&=\frac{b^2}{ac}\end{align}$$

 

So the correct answer is C.

Related questions

0 votes
0 votes
1 answer
1
gatecse asked Sep 18, 2019
251 views
Let $x^{2}-2(4k-1)x+15k^{2}-2k-7>0$ for any real value of $x$. Then the integer value of $k$ is$2$$4$$3$$1$
1 votes
1 votes
1 answer
2
gatecse asked Sep 18, 2019
307 views
If $\alpha$ and $\beta$ be the roots of the equation $x^{2}+3x+4=0,$ then the equation with roots $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$ is$x^{2}+2x+63=0$$x^{2}-63...
2 votes
2 votes
1 answer
3
1 votes
1 votes
0 answers
4
gatecse asked Sep 18, 2019
221 views
The condition that ensures that the roots of the equation $x^{3}-px^{2}+qx-r=0$ are in H.P. is$r^{2}-9pqr+q^{3}=0$$27r^{2}-9pqr+3q^{3}=0$$3r^{3}-27pqr-9q^{3}=0$$27r^{2}-...