recategorized by
661 views
1 votes
1 votes

Let $S=\{6,10,7,13,5,12,8,11,9\},$ and $a=\sum_{x\in S}(x-9)^{2}\:\&\: b=\sum_{x\in S}(x-10)^{2}.$ Then

  1. $a<b$
  2. $a>b$
  3. $a=b$
  4. None of these
recategorized by

2 Answers

4 votes
4 votes

Here $a=\displaystyle \sum_{x\in S} (x-9)^2$ and $b=\displaystyle \sum_{x\in S} (x-10)^2$

$\begin{align}\therefore a-b &=\sum_{x\in S} \left\{ (x-9)^2-(x-10)^2 \right\}; ~~[\text{Distributive law of sum}] \\&=\sum_{x\in S} \left( 2x-19 \right); ~~[\text{using formula }a^2-b^2=(a+b)(a-b)]\\&=2\sum_{x\in S}x-19\sum_{x\in S}1;~~[\text{using the distributive law of sum and }\sum cf(x)=c \sum f(x)]\\&=2 \sum_{x\in S}x-19\times|S| \\&=2(6+10+7+13+5+12+8+11+9) -19\times 9 \\&=-9 \\ \Rightarrow a-b &<0;~~[\because-9<0]\\ \therefore a&<b\end{align}$

 

So the correct answer is A.

2 votes
2 votes
$\underline{\textbf{Answer:}\Rightarrow}\;\;\mathbf{A.}$

$$\begin {align}\textbf{Given:}\;\;\;\;\;\;\;\mathrm a &= \sum_{x=5}^{13}(x-9)^2\\ \text b &= \sum_{x=5}^{13}(x-10)^2 \\&=\sum_{x = 5}^{13}((x-9)-1)^2\\&=\sum_{x = 5}^{13}[(x-9)^2 + 1 -2(x-9)] \\&=\sum_{x = 5}^{13}(x-9)^2 + \sum_{x=5}^{13}1-2\sum _{x = 5}^{13}(x-9)\\&=a + \sum_{x = 5}^{13}1-2 \underbrace {\sum_{x=5}^{x = 13}(x-9)}_\text {= 0 }\\&=a + 9 -2(-4-3-2-1-0+1+2+3+4)\\&=a + 9 \end {align}$$

Now, we get:

$$\begin{align} &b = a + 9\\ &\Rightarrow b-a > 0\\ &\Rightarrow b\gt a \\ &\text{or,} ~a \lt b \end {align}$$

$\therefore \textbf A$ is the correct answer.
edited by

Related questions

0 votes
0 votes
1 answer
1
gatecse asked Sep 18, 2019
372 views
For natural numbers $n,$ the inequality $2^{n}>2n+1$ is valid when$n\geq 3$$n<3$$n=3$None of these
0 votes
0 votes
1 answer
2
gatecse asked Sep 18, 2019
281 views
The smallest integer $n$ for which $1+2+2^{2}+2^{3}+2^{4}+\cdots+2^{n}$ exceeds $9999$, given that $\log_{10}2=0.30103$, is$12$$13$$14$None of these
1 votes
1 votes
1 answer
3
gatecse asked Sep 18, 2019
410 views
The value of $\log_{2}e-\log_{4}e+\log_{8}e-\log_{16}e+\log_{32}e-\cdots\:\:$ is$-1$$0$$1$None of these
4 votes
4 votes
1 answer
4
gatecse asked Sep 18, 2019
318 views
The sequence $\dfrac{1}{\log_{3} 2},\dfrac{1}{\log_{6} 2},\dfrac{1}{\log_{12} 2},\dfrac{1}{\log_{24} 2}\cdots$ is inArithmetic progression (AP)Geometric progression (GP)H...