recategorized by
297 views

1 Answer

4 votes
4 votes

Answer: $\mathbf B$

Solution:

Let $$\mathrm{ I = \underset{x\rightarrow-1}\lim\frac{1+\sqrt[3]{x}}{1+\sqrt[5]{x}}}\ \tag{1}$$

Applying L'Hospital's Rule in $(1)$, we get:

 $$\mathrm{\Rightarrow I=\underset{x\rightarrow-1}\lim\frac{\frac{d}{dx}\left(1+\sqrt[3]{x}\right)}{\frac{d}{dx}\left(1+\sqrt[5]{x}\right)}}$$

$$\mathrm{=\underset{x\rightarrow-1}\lim\frac{\frac{d}{dx}\left(1+x^{\frac{1}{3}}\right)}{\frac{d}{dx}\left(1+x^{\frac{1}{5}}\right)}}$$

$$\mathrm{=\underset{x\rightarrow-1}\lim\frac{\frac{1}{3}x^{\left(1-\frac{1}{3}\right)}}{\frac{1}{5}x^{\left(1-\frac{1}{5}\right)}}} $$

$$\mathrm{= \underset{x\rightarrow-1}\lim\frac{\frac{1}{3}x^{\frac{2}{3}}}{\frac{1}{5}x^{\frac{4}{5}}}}$$

$$\mathrm{=\underset{x\rightarrow-1}\lim\frac{\frac{1}{3}x^{2.{\frac{1}{3}}}}{\frac{1}{5}x^{4{.\frac{1}{5}}}}}$$

Now, substitute $\mathbf {x = -1}$ above, $\because \mathbf {x^2\;\text{and} \; x^4}$ terms have even powers and anything raised to power $\mathbf 1$ is $\mathbf 1$, so the equation reduces to:

$$\mathrm I= \dfrac{\frac{1}{3}} {\frac{1}{5}} = \dfrac{5}{3}$$

$\therefore \mathbf B$ is the correct option.

edited by
Answer:

Related questions

1 votes
1 votes
2 answers
1
gatecse asked Sep 18, 2019
357 views
The value of $\underset{x \to 0}{\lim} \dfrac{\tan ^2 x – x \tan x }{\sin x}$ is$\frac{\sqrt{3}}{2}$$\frac{1}{2}$$0$None of these
1 votes
1 votes
1 answer
2
gatecse asked Sep 18, 2019
356 views
$\underset{x \to 1}{\lim} \dfrac{x^{\frac{1}{3}}-1}{x^{\frac{1}{4}}-1}$ equals$\frac{4}{3}$$\frac{3}{4}$$1$None of these
0 votes
0 votes
1 answer
3
gatecse asked Sep 18, 2019
309 views
$\underset{x \to 0}{\lim} x \sin \left( \frac{1}{x} \right)$ equals$-1$$0$$1$Does not exist
1 votes
1 votes
0 answers
4
gatecse asked Sep 18, 2019
402 views
$\underset{x \to 0}{\lim} \sin \bigg( \dfrac{1}{x} \bigg)$ equals$-1$$0$$1$Does not exist