The Gateway to Computer Science Excellence
0 votes
21 views

Suppose $f_{\alpha} : [0,1] \to [0,1],\:\: -1 < \alpha < \infty$ is given by

$$f_{\alpha} (x) = \frac{(\alpha +1)x}{\alpha x+1}$$

Then $f_{\alpha}$ is

  1. A bijective (one-one and onto) function
  2. A surjective (onto ) function
  3. An injective (one-one) function
  4. We cannot conclude about the type
in Set Theory & Algebra by Boss (17.5k points)
recategorized by | 21 views

Please log in or register to answer this question.

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,388 answers
198,575 comments
105,413 users