# ISI2015-DCG-21

95 views

The value of the term independent of $x$ in the expansion of $(1-x)^2(x+\frac{1}{x})^7$ is

1. $-70$
2. $70$
3. $35$
4. None of these

recategorized

$(x+a)^{n}$=$\sum \binom{n}{r} x^{n-r} a^{r}$ put x power zero find r then put r in equations

Ans=-70

## Related questions

1
101 views
The value of $(1.1)^{10}$ correct to $4$ decimal places is $2.4512$ $1.9547$ $2.5937$ $1.4512$
2
113 views
If the letters of the word $\textbf{COMPUTER}$ be arranged in random order, the number of arrangements in which the three vowels $O, U$ and $E$ occur together is $8!$ $6!$ $3!6!$ None of these
3
111 views
The value of the term independent of $x$ in the expansion of $(1-x)^{2}(x+\frac{1}{x})^{7}$ is $-70$ $70$ $35$ None of these
1 vote
Let $(1+x)^n = C_0+C_1x+C_2x^2+ \ldots +C_nx^n, \: n$ being a positive integer. The value of $\left( 1+\frac{C_0}{C_1} \right) \left( 1+\frac{C_1}{C_2} \right) \cdots \left( 1+\frac{C_{n-1}}{C_n} \right)$ is $\left( \frac{n+1}{n+2} \right) ^n$ $\frac{n^n}{n!}$ $\left( \frac{n}{n+1} \right) ^n$ $\frac{(n+1)^n}{n!}$