Answer: $\mathbf C$
The total number of factors are: $\mathbf{34}$
Explanation:
$2,3,4,6,7,8,9,12,14,18,21,24,28,36,42,49,56,63,72,84,98,126,147,168,196,252,294,392,441,504,588,882,1176,1764\;\;\;\text{[Excluding 1 and 3528]}$
OR (Shortcut)
$3528 = 2^3\times3^2\times7^2$
Using the formula:
$\color {red}{\mathbf {\mathrm{(p+1)(q+1)(r+1)}}}- 2(\text{Exclude 1 and 3528}) = (3+1)(2+1)(2+1)-2=34$
where $\color{red} {\mathrm {p, q, r}}$ are the powers of the prime factors.
$\therefore \mathbf C$ is the correct option.
For more such shortcuts: https://www.integers.co/questions-answers/what-are-the-factor-combinations-of-the-number-3528.html