recategorized by
499 views
1 votes
1 votes

The value of $\begin{vmatrix} 1+a & 1 & 1 & 1 \\ 1 & 1+b & 1 & 1 \\ 1 & 1 & 1+c & 1 \\ 1 & 1 & 1 & 1+d \end{vmatrix}$   is

  1. $abcd(1+\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d})$
  2. $abcd(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d})$
  3. $1+\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$
  4. None of these
recategorized by

2 Answers

2 votes
2 votes
$\begin{vmatrix} 1+a & 1 & 1 & 1\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=\begin{vmatrix} 1+a & 1+0 & 1+0 & 1+0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 1st row

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 1+0 & 1+b & 1+0&1+0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 2nd Row of 1st determinant

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 1 & 1 & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=0$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 1+0 &1+0 & 1+c &1+0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 3rd Row of 1st determinant

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 1&1 & 1 &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=0$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 4th Row of 1st determinant

$=\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} 1 & 1 & 1 & 1\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 0 & 0& 0& d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1+b & 1&1 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=0+bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1+0 & 1+b & 1+0&1+0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 2nd Row of determinant

$=bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 1+0 &1+0 & 1+c &1+0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 3rd Row of 1st determinant

$=bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 1 &1 & 1 &1 \\ 1 & 1& 1& 1+d \end{vmatrix}+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=bcd$$+0+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 4th Row of 1st determinant

$=bcd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 1 & 1 & 1&1 \\ 0 &0 & c &0 \\ 0 & 0& 0& d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1+c &1 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=bcd+0+acd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1+0 &1+0 & 1+c &1+0 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 3rd Row of 1st determinant

$=bcd+acd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1 &1 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$

Splitting the 4th Row of 1st determinant

$=bcd+acd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1 &1 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 1 &1 & 1 &1 \\ 0 & 0& 0& d \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1+d \end{vmatrix}$

$=bcd+acd+0+abd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1+0 & 1+0& 1+0& 1+d \end{vmatrix}$

Splitting the 4th Row of  determinant

$=bcd+acd+abd$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 1 & 1& 1& 1 \end{vmatrix}$$+\begin{vmatrix} a & 0 & 0 & 0\\ 0 & b & 0&0 \\ 0 &0 & c &0 \\ 0 & 0& 0& d \end{vmatrix}$

$=bcd+acd+abd+abc+abcd$

$=abcd\left ( \frac{1}{a} + \frac{1}{b} +\frac{1}{c} +\frac{1}{d}+1 \right )$

 

$\therefore$ Option $A.$ is the correct answer.
1 votes
1 votes

Solution:

This problem can be solved using the transformation rules of the matrix.

Related questions

1 votes
1 votes
3 answers
1
gatecse asked Sep 18, 2019
479 views
The value of $$\begin{vmatrix} 1 & \log _x y & \log_x z \\ \log _y x & 1 & \log_y z \\ \log _z x & \log _z y & 1 \end{vmatrix}$$ is$0$$1$$-1$None of these
2 votes
2 votes
1 answer
2
gatecse asked Sep 18, 2019
412 views
Let $A$ be an $n \times n$ matrix such that $\mid A^{2} \mid\: =1$. Here $\mid A \mid $ stands for determinant of matrix $A$. Then$\mid A \mid =1$$\mid A \mid =0 \text{ o...
0 votes
0 votes
1 answer
4
gatecse asked Sep 18, 2019
459 views
If $$f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ then the value of $\big(f(x)\big)^2$ is$f(x)$$f(2x)$$2f(x)$None of th...