1,431 views
1 votes
1 votes
f(x) is a differentiable function that satisfies 5 ≤ f′(x) ≤ 14 for all x. Let a and b be the maximum and minimum values, respectively, that f(11)−f(3) can possibly have, then what is the value of a+b?

1 Answer

1 votes
1 votes
Since $f(x)$ is differentiable on all intervals, we can choose any two points $($ Here we take $11$ and $3)$. So from the mean value theorem, we have some $c$ such that:

$f'\left ( c \right )=\dfrac{\bigg(f(11)-f(3)\bigg)}{(11-3)}$

Now given $5\leqslant f'\left ( c \right )\leqslant 14$  therefore:

$\implies 5\leqslant \dfrac{\bigg(f(11)-f(3)\bigg)}{8}\leqslant 14$

$\implies 40\leqslant \bigg(f(11)-f(3)\bigg)\leqslant 112$

Hence $a = 112$ and $b = 40$  which gives $a+b = 152$ as the answer.
edited by

Related questions

0 votes
0 votes
1 answer
1
Debargha Mitra Roy asked Dec 1, 2023
180 views
0 votes
0 votes
1 answer
2
3 votes
3 votes
1 answer
3
3 votes
3 votes
2 answers
4
pC asked May 12, 2016
4,449 views
If f ' (x) =$\frac{8}{x^{}2+3x+4}$ and f(0) =1 then the lower and upper bounds of f(1) estimated by Langrange 's Mean Value Theorem are ___