recategorized by
413 views
1 votes
1 votes

If $f$ is continuous in $[0,1]$ then $$\displaystyle \lim_ {n \to \infty}   \sum_{j=0}^{[n/2]} \frac{1}{n} f \left(\frac{j}{n} \right)$$ (where $[y]$ is the largest integer less than or equal to $y$)

  1. does not exist
  2. exists and is equal to $\frac{1}{2} \int_0^1 f(x) dx$
  3. exists and is equal to $ \int_0^1 f(x) dx$
  4. exists and is equal to $\int_0^{1/2} f(x) dx$
recategorized by

1 Answer

0 votes
0 votes
Let $f$ be continuous on $[0,1]$.

$$\lim_{n\rightarrow \infty} \sum_{j=0}^{[n/2]} \frac{1}{n} f\left(\frac{j}{n}\right)$$
where [n] is greatest integer function.

I used the following relation,

$$\int_{a}^{b}f(x)\ dx =\lim_{\delta_x \rightarrow 0} \sum_{x=a}^{b}f(x)\delta_x$$

I considered $x=\frac{j}{n}$ and $\delta_x = \frac{(j+1)-j}{n}=\frac{1}{n}$.

At $j=0$, I've $x=0$.

At $j=[n/2]$, if $n$ is even then $x=\frac{1}{2}$. If $n$ is odd,$[n/2]=\frac{n-1}{2}$ then $x=\frac{1}{2}[1-\frac{1}{n}]$.

Therefore, as $n\rightarrow \infty$ out $x=\frac{1}{2}$.

$$\lim_{n\rightarrow \infty} \sum_{j=0}^{[n/2]} \frac{1}{n} f\left(\frac{j}{n}\right)=\int_{0}^{1/2} f(x)\ dx$$

Related questions

0 votes
0 votes
2 answers
1
Arjun asked Sep 23, 2019
513 views
The value of $$\displaystyle \lim_{n \to \infty} \left[ (n+1) \int_0^1 x^n \ln(1+x) dx \right]$$ is$0$$\ln 2$$\ln 3$$\infty$
0 votes
0 votes
1 answer
3
Arjun asked Sep 23, 2019
452 views
Given that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, the value of $$ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+xy+y^2)} dxdy$$ is$\sqrt{\pi/3}$$...
0 votes
0 votes
0 answers
4
Arjun asked Sep 23, 2019
510 views
Let $0 < \alpha < \beta < 1$. Then $$ \Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$$ is equal to$\log_e \frac{\beta}{\alpha}$$\log_e \frac{1+ ...