recategorized by
493 views

2 Answers

0 votes
0 votes

Answer: $B$

$$\underset{n \to \infty}{\lim} \int^1_0x^n\ln(1+x)dx$$

can be simplified to:

$$\ln(2)-\underset{n \to \infty}{\lim}\int^1_0\frac{x^{n+1}}{1 + x}dx$$

$$\because \bigg |\int^1_0\frac{x^{n+1}}{1+x}dx\bigg | \le \int^1_0 \big |x^{n+1} \big|dx$$

Now, here the bound $1+x$ is always greater than equal to $1$

$\Rightarrow \frac{1}{1+x} \le1$

$$\therefore \underset{n \to \infty}{\lim}\int^1_0 x^n \ln(1+x)dx = \ln(2)$$

Thus, $B$ be is the correct option.

Related questions

0 votes
0 votes
1 answer
3
Arjun asked Sep 23, 2019
438 views
Given that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, the value of $$ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+xy+y^2)} dxdy$$ is$\sqrt{\pi/3}$$...
0 votes
0 votes
0 answers
4
Arjun asked Sep 23, 2019
488 views
Let $0 < \alpha < \beta < 1$. Then $$ \Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$$ is equal to$\log_e \frac{\beta}{\alpha}$$\log_e \frac{1+ ...