edited by
543 views
1 votes
1 votes

Let $R$ be the triangle in the $xy$ – plane bounded by the $x$-axis, the line $y=x$, and the line $x=1$. The value of the double integral $$ \int \int_R \frac{\sin x}{x}\: dxdy$$ is

  1. $1-\cos 1$
  2. $\cos 1$
  3. $\frac{\pi}{2}$
  4. $\pi$
edited by

1 Answer

0 votes
0 votes
$$\int\int_D\frac{\sin x}{x}dx\ dy$$ We cannot integrate $\frac{\sin x}{x}$ directly hence we first try to integrate dy first SInce when we draw vertical line through D ,its enters D at y = 0 and leaves at y = x,hence $$=\int_{0}^{1}\int_{0}^{x}\frac{\sin x}{x}dy\ dx$$ $$=\int_{0}^{1}[\frac{\sin x}{x} * y]_0^{x}\ dx$$ $$=\int_{0}^{1}{\sin x}\ dx$$ $$=[-\cos x]_{0}^{1}$$ $$=\cos 0 - \cos1$$ $$=1 - \cos1$$

Related questions

0 votes
0 votes
2 answers
1
Arjun asked Sep 23, 2019
939 views
The limit $\:\:\:\underset{n \to \infty}{\lim} \Sigma_{k=1}^n \begin{vmatrix} e^{\frac{2 \pi i k }{n}} – e^{\frac{2 \pi i (k-1) }{n}} \end{vmatrix}\:\:\:$ is$2$$2e$$2 ...
1 votes
1 votes
3 answers
2
Arjun asked Sep 23, 2019
701 views
The limit $\underset{n \to \infty}{\lim} \left( 1- \frac{1}{n^2} \right) ^n$ equals$e^{-1}$$e^{-1/2}$$e^{-2}$$1$
0 votes
0 votes
1 answer
3
Arjun asked Sep 23, 2019
707 views
Let $a_n= \bigg( 1 – \frac{1}{\sqrt{2}} \bigg) \cdots \bigg( 1- \frac{1}{\sqrt{n+1}} \bigg), \: \: n \geq1$. Then $\underset{n \to \infty}{\lim} a_n$equals $1$does not ...
1 votes
1 votes
1 answer
4
Arjun asked Sep 23, 2019
803 views
The limit $\displaystyle{}\underset{x \to \infty}{\lim} \left( \frac{3x-1}{3x+1} \right) ^{4x}$ equals$1$$0$$e^{-8/3}$$e^{4/9}$