Let $f$ and $g$ be two differentiable functions such that $f’(x)\leq g’(x)$for all $x<1$ and $f’(x) \geq g’(x)$ for all $x>1$. Then
- if $f(1) \geq g(1)$, then $f(x) \geq g(x)$ for all $x$
- if $f(1) \leq g(1)$, then $f(x) \leq g(x)$ for all $x$
- $f(1) \leq g(1)$
- $f(1) \geq g(1)$