recategorized by
526 views
0 votes
0 votes

Let $w=\log(u^2 +v^2)$ where $u=e^{(x^2+y)}$ and $v=e^{(x+y^2)}$. Then $\frac{\partial w }{\partial x} \mid _{x=0, y=0}$ is

  1. $0$
  2. $1$
  3. $2$
  4. $4$
recategorized by

2 Answers

0 votes
0 votes
We can find the value of $\frac{\partial w}{\partial x}=\frac{\partial w}{\partial v}\times \frac{\partial v}{\partial x}$

$\therefore$   $\frac{\partial w}{\partial v}=$  $\frac{1}{u^{2}+v^{2}}\times \left ( 2v \right )$  ----$\left ( 1 \right )$

$\frac{\partial v}{\partial x}=e^{x+y^{2}}\times \left ( 1 \right )$   ---$\left ( 1 \right )$

Multipying and simplifying $\left ( 1 \right )$  and $\left ( 2 \right )$, we get  $\frac{\partial w}{\partial x}=\frac{2}{u^{2}+v^{2}}\times \left ( v \right )\times e^{x+y^{2}}$

$\Rightarrow$   $\frac{\partial w}{\partial x}_{|x=0,y=0}$  $=$ $\frac{2\times 1}{1\times 1}\times 1=2$

$\therefore$  Option C is the answer.
0 votes
0 votes
Use chain rule,

$\frac{\partial w}{\partial x}=\frac{\partial w}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial w}{\partial v}\frac{\partial v}{\partial x}$

Find $u,v$ at $x=0,y=0$.

You will get $1$ as your answer.

Related questions

1 votes
1 votes
1 answer
2
1 votes
1 votes
1 answer
3
Arjun asked Sep 23, 2019
891 views
Let $\omega$ denote a complex fifth root of unity. Define $$b_k =\sum_{j=0}^{4} j \omega^{-kj},$$ for $0 \leq k \leq 4$. Then $ \sum_{k=0}^{4} b_k \omega ^k$ is equal to$...
2 votes
2 votes
2 answers
4
Arjun asked Sep 23, 2019
543 views
Let$$\begin{array}{} V_1 & = & \frac{7^2+8^2+15^2+23^2}{4} – \left( \frac{7+8+15+23}{4} \right) ^2, \\ V_2 & = & \frac{6^2+8^2+15^2+24^2}{4} – \left( \frac{6+8+15+24...