recategorized by
804 views
0 votes
0 votes

Consider the function $$f(x) = \begin{cases} \int_0^x \{5+ \mid 1-y \mid \} dy & \text{ if } x>2 \\ 5x+2 & \text{ if } x \leq 2 \end{cases}$$ Then

  1. $f$ is not continuous at $x=2$
  2. $f$ is continuous and differentiable everywhere
  3. $f$ is continuous everywhere but not differentiable at $x=1$
  4. $f$ is continuous everywhere but not differentiable at $x=2$
recategorized by

2 Answers

2 votes
2 votes
$$f(x)=\begin{cases}
 \displaystyle{\int_{0}^{x}5+|1-y| \ \ \mathrm{d}y} & \text { if } x>2 \\[2ex]
5 x+{2} & \text { if } x \leq 2
\end{cases}$$

$$f'(x)=\begin{cases}
 5+|1-x| & \text { if } x>2 \\[2ex]
5  & \text { if } x \leq 2
\end{cases}$$
Using Newton-Leibnitz rule for differentiation
  

for checking the  differentiability: $$f'(2^+)=\lim_\limits{h \to 0} 5+|1-(2+h)|=6 $$
And
$$f'(2^-)=5$$
Hence,

the function is not differentiable ($\because f'(2^+)\neq f'(2^-) $) .
edited by
2 votes
2 votes

$|1-y| =\left\{\begin{matrix} y-1, & y>1\\ 1-y,&y \leq1 \end{matrix}\right.$

We have to evaluate $\int_{0}^x(5 + |1-y|)dy$ $=\int_{0}^1(5 + (1-y))dy + \int_{1}^x(5 + (y-1))dy$

                                                                          $=\int_{0}^1(6-y)dy + \int_{1}^x(4+y)dy$ 

                                                                          $=6\int_{0}^1 dy - \int_{0}^1y$ $dy  + 4\int_{1}^xdy + \int_{1}^xy$ $dy$

                                                                          $=6[$ $y$ $]_0^1 - \left[\dfrac{y^2}{2}\right]_0^1 + 4[$ $x$ $]_1^x + \left[\dfrac{y^2}{2}\right]_1^x$

                                                                          $=(6-0) - \left[\dfrac{1}{2} - 0\right] + [4x -4] + \left[\dfrac{x^2}{2} - \dfrac{1}{2}\right]$ 

                                                                          $= 6 - 4 -1 +4x +\dfrac{x^2}{2}$

                                                                          $=\dfrac{x^2}{2} + 4x + 1$

 Now  $f(x) =\left\{\begin{matrix} \dfrac{x^2}{2} + 4x + 1, & x>2\\ 5x+2,&x \leq2 \end{matrix}\right.$

$ $

Continuity at $x =2$ :-

$f(2) = 5(2) + 2 = 12$

Left hand limit:- $\lim_{x \to 2^-} f(x) =\lim_{x \to 2^-} 5x + 2 = 5(2) + 2 = 12 = f(2)$

Right hand limt:  $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \dfrac{x^2}{2} + 4x + 1 =\dfrac{2^2}{2} + 4(2) + 1 = 2 + 8 + 1 = 11 \neq f(2)$

So $f(x)$ is not continuous at $x=0$, option A is correct one.  

Related questions

0 votes
0 votes
1 answer
1
Arjun asked Sep 23, 2019
438 views
Given that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, the value of $$ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+xy+y^2)} dxdy$$ is$\sqrt{\pi/3}$$...
0 votes
0 votes
2 answers
2
Arjun asked Sep 23, 2019
493 views
The value of $$\displaystyle \lim_{n \to \infty} \left[ (n+1) \int_0^1 x^n \ln(1+x) dx \right]$$ is$0$$\ln 2$$\ln 3$$\infty$
0 votes
0 votes
0 answers
3
Arjun asked Sep 23, 2019
488 views
Let $0 < \alpha < \beta < 1$. Then $$ \Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$$ is equal to$\log_e \frac{\beta}{\alpha}$$\log_e \frac{1+ ...