The Gateway to Computer Science Excellence
0 votes
13 views

Let $\{a_n\}, n \geq 1$, be a sequence of real numbers satisfying $\mid a_n \mid \leq 1$ for all $n$. Define $A_n = \frac{1}{n}(a_1+a_2+\cdots+a_n)$, for $n \geq 1$. Then $\underset{n \to \infty}{\lim} \sqrt{n}(A_{n+1}-A_n)$ is equal to

  1. $0$
  2. $-1$
  3. $1$
  4. none of these
in Calculus by Veteran (431k points)
recategorized by | 13 views

Please log in or register to answer this question.

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,291 answers
198,209 comments
104,888 users