The Gateway to Computer Science Excellence
0 votes
12 views

Let $\{a_n\}$ be a sequence of real numbers. Then $\underset{n \to \infty}{\lim} a_n$ exists if and only if

  1. $\underset{n \to \infty}{\lim} a_{2n}$ and $\underset{n \to \infty}{\lim} a_{2n+2}$ exists
  2. $\underset{n \to \infty}{\lim} a_{2n}$ and $\underset{n \to \infty}{\lim} a_{2n+1}$ exist
  3. $\underset{n \to \infty}{\lim} a_{2n}, \underset{n \to \infty}{\lim} a_{2n+1}$ and $\underset{n \to \infty}{\lim} a_{3n}$ exist
  4. none of the above
in Calculus by Veteran (431k points)
edited by | 12 views

Please log in or register to answer this question.

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,291 answers
198,209 comments
104,889 users