# ISI2015-MMA-43

177 views

The values of $\eta$ for which the following system of equations

$$\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$$ has a solution are

1. $\eta = 1, -2$
2. $\eta = -1, -2$
3. $\eta = 3, -3$
4. $\eta = 1, 2$

recategorized

1 vote
From the given set of equations,augmented matrix=

$\begin{bmatrix} 1&1 &1 &1 \\ 1& 2 & 4 & a\\ 1& 4& 10& a^{2} \end{bmatrix}$

$R_2$$\rightarrow$$R_2$-$R_1$

$R_3$$\rightarrow$$R_3$-$R_1$

$\begin{bmatrix} 1 & 1 & 1& 1\\ 0& 1 & 3 & a-1\\ 0& 3&9 & a^{2}-1 \end{bmatrix}$

$R_3$$\rightarrow$$R_3$-$3R_2$

$\begin{bmatrix} 1 & 1 & 1& 1\\ 0& 1 & 3 & a-1\\ 0& 0&0 & a^{2}-3a+2 \end{bmatrix}$

For the system of equations to have solution,Rank of augmented matrix must be equal to rank of coefficient matrix

Rank of coefficient matrix=2

so for the rank of augmented matrix to be equal to 2, $a^{2}-3a+2$ must be equal to 0.

Therefore,a=1,2

## Related questions

1
222 views
Let $P_1$, $P_2$ and $P_3$ denote, respectively, the planes defined by $\begin{array} {} a_1x +b_1y+c_1z=\alpha _1 \\ a_2x +b_2y+c_2z=\alpha _2 \\ a_3x +b_3y+c_3z=\alpha _3 \end{array}$ It is given that $P_1$, $P_2$ and $P_3$ intersect ... then the planes do not have any common point of intersection intersect at a unique point intersect along a straight line intersect along a plane
1 vote
Let $a$ be a non-zero real number. Define $f(x) = \begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix}$ for $x \in \mathbb{R}$. Then, the number of distinct real roots of $f(x) =0$ is $1$ $2$ $3$ $4$
A real $2 \times 2$ matrix $M$ such that $M^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1- \varepsilon \end{pmatrix}$ exists for all $\varepsilon > 0$ does not exist for any $\varepsilon > 0$ exists for some $\varepsilon > 0$ none of the above is true
The eigenvalues of the matrix $X = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ are $1,1,4$ $1,4,4$ $0,1,4$ $0,4,4$