search
Log In
1 vote
111 views

For non-negative integers $m$, $n$ define a function as follows

$$f(m,n) = \begin{cases} n+1 & \text{ if } m=0 \\ f(m-1, 1) & \text{ if } m \neq 0, n=0 \\ f(m-1, f(m,n-1))  & \text{ if }  m \neq 0, n \neq 0 \end{cases}$$ Then the value of $f(1,1)$ is

  1. $4$
  2. $3$
  3. $2$
  4. $1$
in Calculus
recategorized by
111 views

1 Answer

0 votes
f(1,1)=f(0,f(1,0))   since m$\neq$0,n$\neq$0

=f(0,f(0,1))           since m$\neq$0,$n=0$

=f(0,2)                 since m$=$0

=3                       since m$=$0

Related questions

0 votes
2 answers
1
155 views
Suppose that a function $f$ defined on $\mathbb{R} ^2$ satisfies the following conditions: $\begin{array} &f(x+t,y) & = & f(x,y)+ty, \\ f(x,t+y) & = & f(x,y)+ tx \text{ and } \\ f(0,0) & = & K, \text{ a constant.} \end{array}$ Then for all $x,y \in \mathbb{R}, \:f(x,y)$ is equal to $K(x+y)$ $K-xy$ $K+xy$ none of the above
asked Sep 23, 2019 in Calculus Arjun 155 views
1 vote
1 answer
2
114 views
If $f(x)$ is a real valued function such that $2f(x)+3f(-x)=15-4x,$ for every $x \in \mathbb{R}$, then $f(2)$ is $-15$ $22$ $11$ $0$
asked Sep 23, 2019 in Calculus Arjun 114 views
0 votes
1 answer
3
147 views
If $f(x) = \dfrac{\sqrt{3}\sin x}{2+\cos x}$, then the range of $f(x)$ is the interval $[-1, \sqrt{3}/2]$ the interval $[- \sqrt{3}/2, 1]$ the interval $[-1, 1]$ none of the above
asked Sep 23, 2019 in Calculus Arjun 147 views
0 votes
1 answer
4
179 views
The limit $\:\:\:\underset{n \to \infty}{\lim} \Sigma_{k=1}^n \begin{vmatrix} e^{\frac{2 \pi i k }{n}} – e^{\frac{2 \pi i (k-1) }{n}} \end{vmatrix}\:\:\:$ is $2$ $2e$ $2 \pi$ $2i$
asked Sep 23, 2019 in Calculus Arjun 179 views
...