# ISI2015-MMA-34

147 views

If $f(x) = \dfrac{\sqrt{3}\sin x}{2+\cos x}$, then the range of $f(x)$ is

1. the interval $[-1, \sqrt{3}/2]$
2. the interval $[- \sqrt{3}/2, 1]$
3. the interval $[-1, 1]$
4. none of the above
in Calculus
recategorized
0
is $C$ the answer.
0
Yes, you are right.

Note that  $y=f(x)=\dfrac{\sqrt 3 \sin x}{2+\cos x}$.

Note that  $y^2=\dfrac{3 \sin ^2 x}{(2+\cos ^2 x)^2}=\dfrac{3 (1- \cos ^2 x)}{(2+\cos ^2 x)^2}$

Put $\cos x =u$, we have

\begin{align}
y^2(2+u)^2 =3(1-u^2) \\ \implies (3+y^2)u^2+4y^2u+4y^2-3=0
\end{align}
For this to have a solution, we need discriminant of the quadratic to be non-negative. Hence, we get
$$(4y)^2-4(3+y^2)(4y^2-3) \ge 0 \\ \implies y^2 \le 1\\ \implies-1 \le y \le 1$$

So, the correct answer is $(C)$.

## Related questions

1
155 views
Suppose that a function $f$ defined on $\mathbb{R} ^2$ satisfies the following conditions: $\begin{array} &f(x+t,y) & = & f(x,y)+ty, \\ f(x,t+y) & = & f(x,y)+ tx \text{ and } \\ f(0,0) & = & K, \text{ a constant.} \end{array}$ Then for all $x,y \in \mathbb{R}, \:f(x,y)$ is equal to $K(x+y)$ $K-xy$ $K+xy$ none of the above
1 vote
If $f(x)$ is a real valued function such that $2f(x)+3f(-x)=15-4x,$ for every $x \in \mathbb{R}$, then $f(2)$ is $-15$ $22$ $11$ $0$
For non-negative integers $m$, $n$ define a function as follows $f(m,n) = \begin{cases} n+1 & \text{ if } m=0 \\ f(m-1, 1) & \text{ if } m \neq 0, n=0 \\ f(m-1, f(m,n-1)) & \text{ if } m \neq 0, n \neq 0 \end{cases}$ Then the value of $f(1,1)$ is $4$ $3$ $2$ $1$
Let $\cos ^6 \theta = a_6 \cos 6 \theta + a_5 \cos 5 \theta + a_4 \cos 4 \theta + a_3 \cos 3 \theta + a_2 \cos 2 \theta + a_1 \cos \theta +a_0$. Then $a_0$ is $0$ $1/32$ $15/32$ $10/32$