recategorized by
605 views

2 Answers

2 votes
2 votes

Answer:(B)

$\displaystyle\sum _{k=2}^{\infty}\frac{1}{k(k-1)}$

$\displaystyle=\sum _{k=2}^{\infty}\frac{k-(k-1)}{k(k-1)}$

$\displaystyle=\sum _{k=2}^{\infty}\left(\frac{1}{(k-1)}-\frac{1}{k}\right)$

$=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots$

$=1-\frac{1}{\infty}$

$=1$

Related questions

0 votes
0 votes
0 answers
2
go_editor asked Sep 13, 2018
250 views
The infinite series $\Sigma_{n=1}^{\infty} \frac{a^n \log n}{n^2}$ converges if and only if$a \in [-1, 1)$$a \in (-1, 1]$$a \in [-1, 1]$$a \in (-\infty, \infty)$
1 votes
1 votes
1 answer
3
Arjun asked Sep 23, 2019
762 views
If $0 <x<1$, then the sum of the infinite series $\frac{1}{2}x^2+\frac{2}{3}x^3+\frac{3}{4}x^4+ \cdots$ is$\log \frac{1+x}{1-x}$$\frac{x}{1-x} + \log(1+x)$$\frac{1}{1-x} ...
0 votes
0 votes
0 answers
4
Arjun asked Sep 23, 2019
519 views
Let $0 < \alpha < \beta < 1$. Then $$ \Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$$ is equal to$\log_e \frac{\beta}{\alpha}$$\log_e \frac{1+ ...