The Gateway to Computer Science Excellence
0 votes
21 views

The series $\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$ converges to

  1. $-1$
  2. $1$
  3. $0$
  4. does not converge
in Numerical Ability by Veteran (431k points)
recategorized by | 21 views

1 Answer

+1 vote

Answer:(B)

$\displaystyle\sum _{k=2}^{\infty}\frac{1}{k(k-1)}$

$\displaystyle=\sum _{k=2}^{\infty}\frac{k-(k-1)}{k(k-1)}$

$\displaystyle=\sum _{k=2}^{\infty}\left(\frac{1}{(k-1)}-\frac{1}{k}\right)$

$=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots$

$=1-\frac{1}{\infty}$

$=1$

by Boss (12.9k points)

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,295 answers
198,260 comments
104,970 users