recategorized by
755 views
0 votes
0 votes

Let $X$ be a nonempty set and let $\mathcal{P}(X)$ denote the collection of all subsets of $X$. Define $f: X \times \mathcal{P}(X) \to \mathbb{R}$ by

$$f(x,A)=\begin{cases} 1 & \text{ if } x \in A \\ 0 & \text{ if } x \notin A \end{cases}$$ Then $f(x, A \cup B)$ equals

  1. $f(x,A)+f(x,B)$
  2. $f(x,A)+f(x,B)\: – 1$
  3. $f(x,A)+f(x,B)\: – f(x,A) \cdot f(x,B)$
  4. $f(x,A)\:+ \mid f(x,A)\: – f(x,B) \mid $
recategorized by

1 Answer

0 votes
0 votes

We will eliminate options.

  1. Assume $x\in A\cap B\Rightarrow x\in A \text{ and }x\in B$. Thus, $f(x,A)+f(x,B)=1+1=2$ which is greater than 1. Hence, incorrect.
  2. Assume $x\in A$ but $x\not\in B$. This implies that $x\in A\cup B$. Thus, $f(x,A\cup B)=1$ but $f(x,A)+f(x,B)-1=1+0-1=0$. Hence, incorrect.
  3. Assume $x\in A\cap B\Rightarrow x\in A \text{ and }x\in B$. Therefore, $f(x,A)+f(x,B)-f(x,A)\cdot f(x,B)=1+1-1=1$. Further, Assume $x\in A$ but $x\not\in B$. This implies that $x\in A\cup B$. Therefore, $f(x,A)+f(x,B)-f(x,A)\cdot f(x,B)=1+0-0=1$. Similarly, $x\in B$ but $x\not\in A$. This option maybe Correct.
  4. Assume $x\in A$ but $x\not\in B$. This implies that $x\in A\cup B$. Thus, $f(x,A\cup B)=1$ but $f(x,A)+|f(x,A)-f(x,B)|=1+|1-0|=2$. Hence, incorrect.

 

Therefore, is the correct answer.

Related questions

0 votes
0 votes
1 answer
1
Arjun asked Sep 23, 2019
533 views
Consider the sets defined by the real solutions of the inequalities$$A = \{(x,y):x^2+y^4 \leq 1 \} \:\:\:\:\:\:\:\: B = \{ (x,y):x^4+y^6 \leq 1\}$$Then$B \subseteq A$$A \...
0 votes
0 votes
2 answers
3
1 votes
1 votes
1 answer
4
Arjun asked Sep 23, 2019
527 views
If $f(x)$ is a real valued function such that $$2f(x)+3f(-x)=15-4x,$$ for every $x \in \mathbb{R}$, then $f(2)$ is$-15$$22$$11$$0$