retagged by
859 views
1 votes
1 votes

Let $\omega$ denote a complex fifth root of unity. Define $$b_k =\sum_{j=0}^{4} j \omega^{-kj},$$ for $0 \leq k \leq 4$. Then $ \sum_{k=0}^{4} b_k \omega ^k$ is equal to

  1. $5$
  2. $5 \omega$
  3. $5(1+\omega)$
  4. $0$
retagged by

1 Answer

2 votes
2 votes

Here, $\omega^5=1\Rightarrow \omega^4=\omega^{-1}\Rightarrow \omega^3=\omega^{-2}\Rightarrow \omega^2=\omega^{-3}$

$\therefore \omega^{5-k}=\omega^{-k}$ and $\omega^{5n}=1,~ n \in \mathbb{Z}$.

Now

$\begin{align} \sum_{k=0}^{4}b_k \omega^{k} &= \sum_{k=0}^{4}\left( \sum_{j=0}^{4}j \omega^{-kj} \right) \omega^{k} \\ &=\sum_{k=0}^{4}\sum_{j=0}^{4}j \omega^{k-kj}\\ &=\sum_{k=0}^{4} \left(0+ \omega^{0}+2 \omega^{-k}+ 3\omega^{-2k}+ 4\omega^{-3k} \right)\\ &=\sum_{k=0}^{4} \left(1+2 \omega^{4k}+ 3\omega^{3k}+ 4\omega^{2k} \right)\\ &=\sum_{k=0}^{4}1+2\sum_{k=0}^{4}(\omega^{4})^{k}+3\sum_{k=0}^{4}(\omega^{3})^{k}+4\sum_{k=0}^{4}(\omega^{2})^{k}\\ &=5+2\frac{(\omega^4)^5-1}{\omega^4-1}+3\frac{(\omega^3)^5-1}{\omega^3-1}+4\frac{(\omega^2)^5-1}{\omega^2-1}\\ &=5+2\frac{\omega^{20}-1}{\omega^4-1}+3\frac{\omega^{15}-1}{\omega^3-1}+4\frac{\omega^{10}-1}{\omega^2-1}\\ &=5+0+0+0; ~[\because \omega^{5n}=1]\\ &=5 \end{align}$

 

So the correct answer is A.

edited by

Related questions

0 votes
0 votes
1 answer
1
Arjun asked Sep 23, 2019
405 views
If $\alpha, \beta$ are complex numbers then the maximum value of $\dfrac{\alpha \overline{\beta}+\overline{\alpha}\beta}{\mid \alpha \beta \mid}$ is$2$$1$the expression m...
2 votes
2 votes
1 answer
2
Arjun asked Sep 23, 2019
1,115 views
The set of complex numbers $z$ satisfying the equation $$(3+7i)z+(10-2i)\overline{z}+100=0$$ represents, in the complex plane,a straight linea pair of intersecting straig...
2 votes
2 votes
2 answers
3
Arjun asked Sep 23, 2019
527 views
Let$$\begin{array}{} V_1 & = & \frac{7^2+8^2+15^2+23^2}{4} – \left( \frac{7+8+15+23}{4} \right) ^2, \\ V_2 & = & \frac{6^2+8^2+15^2+24^2}{4} – \left( \frac{6+8+15+24...
1 votes
1 votes
1 answer
4
Arjun asked Sep 23, 2019
712 views
If $0 <x<1$, then the sum of the infinite series $\frac{1}{2}x^2+\frac{2}{3}x^3+\frac{3}{4}x^4+ \cdots$ is$\log \frac{1+x}{1-x}$$\frac{x}{1-x} + \log(1+x)$$\frac{1}{1-x} ...