recategorized by
699 views

3 Answers

1 votes
1 votes
Answer $D$

Given:$$\underset{n\to\infty}{\lim}{\Big(1-\frac{1}{n^2}\Big)}^n\qquad \to (1)$$

The above can be written as:

$$\underset{n\to\infty}{\lim}{\Big(1-\frac{1}{n}\Big)}^n\underset{n\to\infty}{\lim}{\Big(1+\frac{1}{n}\Big)}^n\qquad \to (2)$$, using the identity$a^2-b^2 = (a+b)(a-b)$

Now, we know that:

$$\underset{n\to\infty}{\lim}{\Big (1-\frac{1}{n}\Big)}^n = \frac{1}{e} \qquad \to (3),\;and\; \underset{n\to\infty}{\lim}{\Big (1+\frac{1}{n}\Big) }^n= e\qquad \to (4)$$

From equations $(1), \;(2) \;and (3)$, we get:

$$\underset{n\to\infty}{\lim}{\Big(1-\frac{1}{n^2}\Big)}^n = \frac{1}{e}\times e = 1$$

$\therefore D$ is the correct option.
0 votes
0 votes

Answer: D

--------------------------------------------------------------------

An easy and standard 12th class method:

If $$\lim_{x\to a} f(x)=1$$ and  $$\lim_{x\to a} g(x)=+\infty$$ then $$\lim_{x\to a}f^g=e^{\lim_{x\to a}(f-1)g}$$

 

Here $f(n)=1-\frac{1}{n^2}$ and $g(n)=n$. Therefore,

$$\lim_{n\to\infty}(1\frac{-1}{n^2}-1)n=0$$

Thus, $$\lim_{n\to\infty}\left(1-\frac{1}{n^2}\right)^{n}=e^0=1$$

0 votes
0 votes
let assume ,

y=$\lim_{n->\infty}(1-\frac{1}{n^{2}})^{n}$

taking log both side,

$\ln y=\lim_{n->\infty}n\ln (1-\frac{1}{n^{2}})$

let us assume z=1/n , so as $n->\infty$ ,z->0.

$\ln y=\lim_{z->0} \frac{\ln (1-z^{2})}{z}$

it is now is in $\frac{0}{0}$ form , so we can use L’Hopital rule,

$\ln y=\lim_{z->0}\frac{-2z}{1-z^{2}}$

$\ln y=0$

$y=1$

so correct is (D).

Related questions

0 votes
0 votes
2 answers
1
Arjun asked Sep 23, 2019
934 views
The limit $\:\:\:\underset{n \to \infty}{\lim} \Sigma_{k=1}^n \begin{vmatrix} e^{\frac{2 \pi i k }{n}} – e^{\frac{2 \pi i (k-1) }{n}} \end{vmatrix}\:\:\:$ is$2$$2e$$2 ...
0 votes
0 votes
1 answer
2
Arjun asked Sep 23, 2019
701 views
Let $a_n= \bigg( 1 – \frac{1}{\sqrt{2}} \bigg) \cdots \bigg( 1- \frac{1}{\sqrt{n+1}} \bigg), \: \: n \geq1$. Then $\underset{n \to \infty}{\lim} a_n$equals $1$does not ...
1 votes
1 votes
1 answer
3
Arjun asked Sep 23, 2019
797 views
The limit $\displaystyle{}\underset{x \to \infty}{\lim} \left( \frac{3x-1}{3x+1} \right) ^{4x}$ equals$1$$0$$e^{-8/3}$$e^{4/9}$
0 votes
0 votes
1 answer
4
Arjun asked Sep 23, 2019
736 views
$\displaystyle{}\underset{n \to \infty}{\lim} \frac{1}{n} \bigg( \frac{n}{n+1} + \frac{n}{n+2} + \cdots + \frac{n}{2n} \bigg)$ is equal to$\infty$$0$$\log_e 2$$1$