# ISI2015-MMA-17

1 vote
140 views

Let $X=\frac{1}{1001} + \frac{1}{1002} + \frac{1}{1003} + \cdots + \frac{1}{3001}$. Then,

1. $X \lt1$
2. $X\gt3/2$
3. $1\lt X\lt 3/2$
4. none of the above holds

recategorized

Answer: $\mathbf C$

This is nothing but a Harmonic Series.

$$\mathrm{H_n} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots+\frac{1}{n} = \sum_{k=1}^n$$

Now, we need to find $$\mathrm {H_{3001}-H_{1000}}$$

$\frac{1}{n}$ is monotonically decreasing function, so by using Riemann sum definite integral

$$\int_{1002}^{3002}\frac{1}{t}dt \leq \sum_{1001}^{3001}\frac{1}{n}\leq \int_{1001}^{3001}\frac{1}{t}dt$$

which simplifies to:

$$\ln \frac{3002}{1002} \leq \;\text{answer}\; \leq\ln\frac{3001}{1001}$$

This values can be approximated to:

$$1 \lt\;\text{answer}\;1.5 \implies 1 \lt X \lt\frac{3}{2}$$

$\therefore \mathbf C$ is the right answer.

edited by

## Related questions

1
138 views
The series $\sum_{k=2}^{\infty} \frac{1}{k(k-1)}$ converges to $-1$ $1$ $0$ does not converge
1 vote
If $0 <x<1$, then the sum of the infinite series $\frac{1}{2}x^2+\frac{2}{3}x^3+\frac{3}{4}x^4+ \cdots$ is $\log \frac{1+x}{1-x}$ $\frac{x}{1-x} + \log(1+x)$ $\frac{1}{1-x} + \log(1-x)$ $\frac{x}{1-x} + \log(1-x)$
Let $0 < \alpha < \beta < 1$. Then $\Sigma_{k=1}^{\infty} \int_{1/(k+\beta)}^{1/(k+\alpha)} \frac{1}{1+x} dx$ is equal to $\log_e \frac{\beta}{\alpha}$ $\log_e \frac{1+ \beta}{1 + \alpha}$ $\log_e \frac{1+\alpha }{1+ \beta}$ $\infty$
For positive real numbers $a_1, a_2, \cdots, a_{100}$, let $p=\sum_{i=1}^{100} a_i \text{ and } q=\sum_{1 \leq i < j \leq 100} a_ia_j.$ Then $q=\frac{p^2}{2}$ $q^2 \geq \frac{p^2}{2}$ $q< \frac{p^2}{2}$ none of the above