The Gateway to Computer Science Excellence
0 votes

Consider the polynomial  $x^5+ax^4+bx^3+cx^2+dx+4$ where $a,b,c,d$ are real numbers. If $(1+2i)$ and $(3-2i)$ are two two roots of this polynomial then the value of $a$ is

  1. $-524/65$
  2. $524/65$
  3. $-1/65$
  4. $1/65$
in Numerical Ability by Veteran (431k points)
recategorized by | 23 views

1 Answer

0 votes

Answer: $A$

Let the roots be $\alpha_1, \alpha_2, \alpha_3, \alpha_4,$ and $\alpha_5$


We know that the roots of the coefficients are the real numbers and two imaginary roots are given.
Therefore with this hint, we know other two roots as well, which are nothing but just the conjugate of these two imaginary roots. So, total $4$ roots are known out of $5$

Now, for any polynomial.

$$(x+\alpha_1)(x + \alpha_2)(x+\alpha_3)(x+\alpha_4)(x+\alpha_5) = 0$$

$$\therefore \; x^5+ x^4(\alpha_1 + \alpha_2+\alpha_3+\alpha_4+\alpha_5)+x^3(\alpha_1\alpha_2+\alpha_2\alpha_3+\dots) + x^2(\alpha_1.\alpha_2.\alpha_3 + \alpha_2.\alpha_3.\alpha_4+\dots) + x^1(\alpha_1\alpha_2\alpha_3\alpha_4 + \alpha_2\alpha_3\alpha_4\alpha_5+\dots) + x^0(\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5) = 0$$

So, product of roots is given by:

$$\alpha_1\alpha_2\alpha_3\alpha_4\alpha_5 = 4 \implies (1+2\iota)(1-2\iota)(3-2\iota)(3+2\iota) \color{blue}{\alpha_5} = 4$$

$$\implies \color{blue}{\alpha_5} = \frac{4}{65}$$

Now, Sum of of roots is given by:

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = -a$$

$$\implies (1+2\iota)+(1-2i)+(3+2\iota)+(3-2\iota)+\frac{4}{65} = \color{red} {-a}$$

$$\implies \color {red}{a} = \color {red}{-\frac{524}{65}}$$

$\therefore \;A$ is the correct answer.

by Boss (18.9k points)
edited by
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,295 answers
104,970 users