The Gateway to Computer Science Excellence
0 votes
9 views

Let $(1+x)^n  = C_0+C_1x+C_2x^2+ \cdots +C_nx^n, \: n$ being a positive integer. The value of 

$$\bigg( 1+\frac{C_0}{C_1} \bigg) \bigg( 1+\frac{C_1}{C_2} \bigg) \cdots \bigg( 1+\frac{C_{n-1}}{C_n} \bigg)$$

is

  1. $\bigg( \frac{n+1}{n+2} \bigg) ^n$
  2. $ \frac{n^n}{n!} $
  3. $\bigg( \frac{n}{n+1} \bigg) ^n$
  4. $\frac{(n+1)^n}{n!}$
in Combinatory by Veteran (424k points)
recategorized by | 9 views

1 Answer

0 votes

Here $C_k$ means $\binom{n}{k}$.

and $\binom{n}{k }$/$\binom{n}{k+1 }$=(k+1)/(n-k)


Therefore,$C_0$/$C_1$=1/(n-0) and $C_1$/$C_2$=2/(n-1), $C_2$/$C_3$=3/(n-2)...

so (1+$C_0$/$C_1$)*(1+$C_1$/$C_2$)*(1+$C_2$/$C_3$)....(1+$C_n$/$C_n-1$) =(1+1/n)*(1+2/(n-1))*(1+3/(n-2)).....(1+n/(n-n+1))

=((n+1)/n)*((n+1)/(n-1))*((n+1)/(n-2))....*((n+1)/1)

=$(n+1)^{n}$/n!.

There fore option d is the right answer

Can some one edit this... i am new to latex

by Active (3.2k points)

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,647 questions
56,492 answers
195,439 comments
100,695 users