recategorized by
392 views
0 votes
0 votes

For the matrices $A = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $(B^{-1}AB)^3$ is equal to

  1. $\begin{pmatrix} a^3 & a^3 \\ 0 & a^3 \end{pmatrix}$
  2. $\begin{pmatrix} a^3 & 3a^3 \\ 0 & a^3 \end{pmatrix}$
  3. $\begin{pmatrix} a^3 & 0 \\ 3a^3 & a^3 \end{pmatrix}$
  4. $\begin{pmatrix} a^3 & 0 \\ -3a^3 & a^3 \end{pmatrix}$
recategorized by

Please log in or register to answer this question.

Related questions

2 votes
2 votes
2 answers
1
gatecse asked Sep 18, 2019
515 views
Let $A=\begin{pmatrix} 1 & 1 & 0\\ 0 & a & b\\1 & 0 & 1 \end{pmatrix}$. Then $A^{-1}$ does not exist if $(a,b)$ is equal to$(1,-1)$$(1,0)$$(-1,-1)$$(0,1)$
3 votes
3 votes
3 answers
2
3 votes
3 votes
1 answer
3
Arjun asked Sep 23, 2019
549 views
Suppose that $A$ is a $3 \times 3$ real matrix such that for each $u=(u_1, u_2, u_3)’ \in \mathbb{R}^3, \: u’Au=0$ where $u’$ stands for the transpose of $u$. Then ...
1 votes
1 votes
1 answer
4
Arjun asked Sep 23, 2019
663 views
The value of $\lambda$ such that the system of equation$$\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = &...