recategorized by
660 views
1 votes
1 votes

The value of $\lambda$ such that the system of equation

$$\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = & 4 \end{array}$$ has no solution is

  1. $3$
  2. $1$
  3. $0$
  4. $-3$
recategorized by

1 Answer

3 votes
3 votes

Given that $$\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = & 4 \end{array}$$

Non-homogeneous eqautions is the form of $AX = B$ and augmented matrix $[A:B]$

Case$1:$ If $\text{rank}(A) \neq \text{rank}([A:B]),$ then no solution. 

Case$2:$ If $\text{rank}(A) = \text{rank}([A:B]),$ then

  1.  If  $\text{rank}(A) = \text{rank}([A:B]) = \text{number of variables(unknown)},$ then unique solution.
  2.  If  $\text{rank}(A) = \text{rank}([A:B]) < \text{number of variables(unknown)},$ then infinite solution.

Now, we can write the above equations into an augmented form

$[A: B]=\begin{bmatrix} 2&-1 &2 &:2 \\ 1&-2 &1 &:-4 \\ 1& 1& \lambda&:4 \end{bmatrix}$

Operation $R_{3}\rightarrow R_{3} + R_{2}$

$[A: B]=\begin{bmatrix} 2&-1 &2 &:2 \\ 1&-2 &1 &:-4 \\ 2& -1& \lambda + 1&:0 \end{bmatrix}$

Operation $R_{3}\rightarrow R_{3} - R_{1}$

 $[A: B]=\begin{bmatrix} 2&-1 &2 &:2 \\ 1&-2 &1 &:-4 \\ 0& 0& \lambda - 1  &:-2 \end{bmatrix}$

No solution means  $\text{rank}(A) \neq \text{rank}([A:B])$

It is only possible when $\lambda - 1 = 0 \implies \lambda = 1$

Here $,\text{rank}(A)  = 2$ and $\text{rank}([A:B]) = 3,$ this is satisfied the no solution condition.

$\therefore \lambda = 1$

So, the correct answer is $(B).$

edited by

Related questions

3 votes
3 votes
1 answer
1
Arjun asked Sep 23, 2019
519 views
The values of $\eta$ for which the following system of equations$$\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & ...
3 votes
3 votes
3 answers
2
3 votes
3 votes
1 answer
3
Arjun asked Sep 23, 2019
546 views
Suppose that $A$ is a $3 \times 3$ real matrix such that for each $u=(u_1, u_2, u_3)’ \in \mathbb{R}^3, \: u’Au=0$ where $u’$ stands for the transpose of $u$. Then ...
0 votes
0 votes
0 answers
4