in Others retagged by
370 views
0 votes
0 votes

Let $f(x) = \dfrac{x}{(x-1)(2x+3)}$, where $x>1$. Then the $4^{th}$ derivative of $f, \: f^{(4)} (x)$ is equal to

  1. $- \frac{24}{5} \bigg[ \frac{1}{(x-1)^5} – \frac{48}{(2x+3)^5} \bigg]$
  2. $\frac{24}{5} \bigg[ –  \frac{1}{(x-1)^5} + \frac{48}{(2x-3)^5} \bigg]$
  3. $\frac{24}{5} \bigg[ \frac{1}{(x-1)^5} + \frac{48}{(2x+3)^5} \bigg]$
  4. $\frac{64}{5} \bigg[ \frac{1}{(x-1)^5} + \frac{48}{(2x+3)^5} \bigg]$
in Others retagged by
by
370 views

4 Comments

@ankitgupta.1729

I am not getting this 48 in the differentiation of $\frac{3}{5(2x+3)}$.

Can you please verify once??

0
0

@`JEET

Here, $f(x) = \frac{1}{5(x-1)} + \frac{3}{5(2x+3)}\\ f'(x) =\frac{-1}{5(x-1)^2} - \frac{6}{5(2x+3)^2}\\ f''(x) = \frac{2}{5(x-1)^3} + \frac{24}{5(2x+3)^3}\\ f'''(x) = \frac{-6}{5(x-1)^4} - \frac{72*2}{5(2x+3)^4} \\f''''(x) = \frac{24}{5(x-1)^5} + \frac{72*2*8}{5(2x+3)^5}$

answer should be (C)

2
2
I made a foolish mistake. I wasn't differentiating the $2x$ itself.

Between thanks.
1
1

1 Answer

1 vote
1 vote
$\underline{\textbf{Answer:}}\Rightarrow \mathbf C$

$\underline{\textbf{Explanation:}}\Rightarrow$

Using partial differentiation:

$\frac{x}{(x-1)(2x+3)} = \frac{\mathrm A}{x-1} + \frac{\mathrm B}{(2x+3)}$

$\Rightarrow \mathrm x = \mathrm A(2x+3) + \mathrm B(x-1)$

When $x = 1$, then $1 = 5\mathrm A \Rightarrow \mathrm A = \frac{1}{5}$

when $x = -\frac{3}{2}, \text {then}\; -\frac{3}{2} = -\frac{5\mathrm B}{2} \Rightarrow \mathrm B = \frac{3}{5}$

So, $f(x) = \frac{x}{(x-1)(2x+3)} = \frac{1}{(x-1)}+\frac{3}{5(3x+3)}$

Now, $f(x) = \frac{1}{5(x-1)} + \frac{3}{5(2x+3)}\\ f'(x) =\frac{-1}{5(x-1)^2} - \frac{6}{5(2x+3)^2}\\ f''(x) = \frac{2}{5(x-1)^3}+ + \frac{24}{5(2x+3)^3}\\ f'''(x) = \frac{-6}{5(x-1)^4} - \frac{72\times2}{5(2x+3)^4} \\f''''(x) = \frac{24}{5(x-1)^5} + \frac{72\times2\times8}{5(2x+3)^5} \\f''''(x) = \frac{24}{5}\bigg[\frac{1}{(x-1)^5} + \frac{48}{5(2x+3)^5}\bigg ]$

$\therefore \mathrm {\mathbf C}$ is the correct option.
edited by
by

2 Comments

Can you make another line to show the closed form like those in the options?

I meant to show
$=\frac{24}{5} \bigg[ \frac{1}{(x-1)^5} + \frac{48}{(2x+3)^5} \bigg]$ being the last line.
1
1
Done!

Thanks for pointing out.
1
1

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true