The Gateway to Computer Science Excellence
0 votes
26 views

The maximum value of the real valued function $f(x)=\cos x + \sin x$ is

  1. $2$
  2. $1$
  3. $0$
  4. $\sqrt{2}$
in Calculus by Veteran (431k points)
recategorized by | 26 views

1 Answer

+1 vote

Answer: $\mathbf D$

Explanation:

Method 1:

Maximum and minimum values of the expression of the form

$a\sin x + b \cos x$ is given by

$\pm \sqrt{a^2+b^2}$

Here, $a = 1, \;and \; b = 1$

So, Maximum value $= \sqrt{1^2 + 1^2} = \sqrt2$

So, option $\mathbf D$ is the correct answer.

Method 2:

Let $y = \cos x + \sin x$

On differentiating with respect to x, we get:

$\frac{dy}{dx} = -\sin x + \cos x$

Put this equation equals to 0, for calculating the maxima.

Now,

$\frac{dy}{dx}  = 0 \implies \sin x = \cos x \implies x = \frac{\pi}{4}$

So, we will get the maximum value at $x = \frac{\pi}{4} = \frac{1}{\sqrt 2} = \sqrt 2$

So, again by this method option $\mathbf D$ is the right answer.

by Boss (18.9k points)
edited by
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,291 answers
198,209 comments
104,888 users