# ISI2014-DCG-42

77 views

Let $f(x)=\sin x^2, \: x \in \mathbb{R}$. Then

1. $f$ has no local minima
2. $f$ has no local maxima
3. $f$ has local minima at $x=0$ and $x=\pm\sqrt{(k+\frac{1}{2} ) \pi}$ for odd integers $k$ and local maxima at $x=\pm\sqrt{(k+\frac{1}{2} ) \pi}$ for even integers $k$
4. None of the above
in Calculus
recategorized
0
$f(x) = \sin x^2$

$f'(x) = \cos x^2 2x = 2x \cos x^2 = 0$

$\Rightarrow \cos x^2 = 0 \Rightarrow \frac{\pi}{2}, 3\frac{\pi}{2}$

$f''(x) = -4x^2\sin x^2 + 2\cos x^2$

Now, put $x^2 = \frac{\pi}{2} \; \text{in}\; f''(x)$, we get:

$f(x) < 0$,

$\Rightarrow f(x) \text{ has maxima at x =$\pm\sqrt{\frac{\pi}{2}}$}$
0

@ankitgupta.1729

3

@`JEET

when $f'(x)= 0$ i.e. $2xcosx^2 = 0$ then either $x=0$ or $cos\;x^2 = 0$

Now, $cos\;x^2 = 0$ means $x^2 = \frac{ \pi }{2} , \frac{3 \pi}{2} , \frac{5 \pi}{2} ,.......$

(or) $x = \pm \sqrt \frac{ \pi }{2} ,\pm \sqrt \frac{3 \pi}{2} , \pm \sqrt \frac{5 \pi}{2} ,.......$

We can also write it as :

$x = \pm \sqrt {0 \pi + \frac{ \pi }{2}} ,\pm \sqrt{ 1 \pi + \frac{ \pi}{2}} , \pm \sqrt {2\pi + \frac{ \pi}{2}} ,.......$

Now, $f''(x) = -4x^2sin\;x^2 + 2cos\;x^2$

1) at $x=0,$ $f''(0) = 2$ . So, $f''(0) > 0$ , So, at $x=0$ , $f(x)$ has local minima.

2) at $x= \pm \sqrt{ 1 \pi + \frac{ \pi}{2}}$,  $f''(\pm \sqrt{ 1 \pi + \frac{ \pi}{2}}) = 6 \pi$ . So, $f''(0) > 0$ , So, at $x=\pm \sqrt{ 1 \pi + \frac{ \pi}{2}}$ , $f(x)$ has local minima.

3) at $x= \pm \sqrt {2\pi + \frac{ \pi}{2}}$,  $f''(\pm \sqrt {2\pi + \frac{ \pi}{2}}) = -10 \pi$ . So, $f''(0) < 0$ , So, at $x=\pm \sqrt {2\pi + \frac{ \pi}{2}}$ , $f(x)$ has local maxima.

So, observe the pattern or we can prove it for even $k$ and odd $k$, answer should be $C$

1
Thanks.

## Related questions

1
118 views
It is given that $e^a+e^b=10$ where $a$ and $b$ are real. Then the maximum value of $(e^a+e^b+e^{a+b}+1)$ is $36$ $\infty$ $25$ $21$
1 vote
Suppose that the function $h(x)$ is defined as $h(x)=g(f(x))$ where $g(x)$ is monotone increasing, $f(x)$ is concave, and $g’’(x)$ and $f’’(x)$ exist for all $x$. Then $h(x)$ is always concave always convex not necessarily concave None of these
The function $f(x) = x^{1/x}, \: x \neq 0$ has a minimum at $x=e$; a maximum at $x=e$; neither a maximum nor a minimum at $x=e$; None of the above
The function $f(x)=\sin x(1+ \cos x)$ which is defined for all real values of $x$ has a maximum at $x= \pi /3$ has a maximum at $x= \pi$ has a minimum at $x= \pi /3$ has neither a maximum nor a minimum at $x=\pi/3$