# ISI2014-DCG-38

191 views

Suppose that $A$ is a $3 \times 3$ real matrix such that for each $u=(u_1, u_2, u_3)’ \in \mathbb{R}^3, \: u’Au=0$ where $u’$ stands for the transpose of $u$. Then which one of the following is true?

1. $A’=-A$
2. $A’=A$
3. $AA’=I$
4. None of these

recategorized

$\begin{bmatrix} u1 &u2 &u3 \end{bmatrix} \begin{bmatrix} a1 &a2 &a3 \\ a4&a5 &a6 \\ a7& a8 & a9 \end{bmatrix} \begin{bmatrix} u1\\ u2\\ u3 \end{bmatrix}$

$(u1a1 + u2a4 + u3a7)*u1 + (u1a2 + u2a5 + u3a8)*u2 + (u1a3 + u2a6 + u3a9)*u3 = 0$

$u1^{2}a1 + u1u2(a4 + a2) + u1u3(a7 + a3) + u2^{2}a5 + u2u3(a8 + a6) + u3^{2}a9 = 0$

This can only be possible when the matrix A is skew symmetric. Because all the diagonal elements $(a1,a5,a9)$ will be 0. And all the non diagonal elements will be negation of each other.$(a2 = -a4, a3= -a7, a6 = -a8)$
0
Nice !

## Related questions

1
334 views
If $M$ is a $3 \times 3$ matrix such that $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}M=\begin{bmatrix}1 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix}3 & 4 & 5 \end{bmatrix} M = \begin{bmatrix}0 & 1 & 0 \end{bmatrix}$ then $\begin{bmatrix}6 & 7 & 8 \end{bmatrix}M$ is ... $\begin{bmatrix}0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 & 2 & 0 \end{bmatrix}$ $\begin{bmatrix} 9 & 10 & 8 \end{bmatrix}$
The value of $\lambda$ such that the system of equation $\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = & 4 \end{array}$ has no solution is $3$ $1$ $0$ $-3$
For the matrices $A = \begin{pmatrix} a & a \\ 0 & a \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $(B^{-1}AB)^3$ is equal to $\begin{pmatrix} a^3 & a^3 \\ 0 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 3a^3 \\ 0 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 0 \\ 3a^3 & a^3 \end{pmatrix}$ $\begin{pmatrix} a^3 & 0 \\ -3a^3 & a^3 \end{pmatrix}$
The values of $\eta$ for which the following system of equations $\begin{array} {} x & + & y & + & z & = & 1 \\ x & + & 2y & + & 4z & = & \eta \\ x & + & 4y & + & 10z & = & \eta ^2 \end{array}$ has a solution are $\eta=1, -2$ $\eta=-1, -2$ $\eta=3, -3$ $\eta=1, 2$