recategorized by
417 views
2 votes
2 votes

Let $x_1 > x_2>0$. Then which of the following is true?

  1. $\log \big(\frac{x_1+x_2}{2}\big) > \frac{\log x_1+ \log x_2}{2}$
  2. $\log \big(\frac{x_1+x_2}{2}\big) < \frac{\log x_1+ \log x_2}{2}$
  3. There exist $x_1$ and $x_2$ such that $x_1 > x_2 >0$ and $\log \big(\frac{x_1+x_2}{2}\big) = \frac{\log x_1+ \log x_2}{2}$
  4. None of these
recategorized by

1 Answer

3 votes
3 votes

Here $x_1>x_2>0 \Rightarrow x_1 \ne x_2 \Rightarrow (x_1-x_2)^2 \ne 0$.

and we know from simple algebra that

$(x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2\tag{i}$

Now $\forall~ x_1, x_2 \in \mathbb{R}$ and $x_1 \ne x_2$, we obtain

$$\begin{align} (x_1-x_2)^2 &>0 \\ \Rightarrow (x_1+x_2)^2-4x_1x_2 &>0 ~;~[\mathrm{From~no(i)}] \\ \Rightarrow (x_1+x_2)^2 &> 4x_1x_2 \\ \Rightarrow x_1+x_2 &>2\cdot\sqrt{x_1x_2}\\ \Rightarrow \frac{x_1+x_2}{2}&> (x_1x_2)^{\frac{1}{2}} \\ \Rightarrow \log\left( \frac{x_1+x_2}{2} \right) &> \log(x_1x_2)^{\frac{1}{2}} \\ \Rightarrow \log\left( \frac{x_1+x_2}{2} \right) &> \frac{1}{2}\log(x_1x_2)~;~[\because \log a^r=r\log a] \\ \Rightarrow \log\left( \frac{x_1+x_2}{2} \right) &> \frac{\log(x_1)+\log(x_2)}{2} ~;~[\because \log (xy)=\log x + \log y] \end{align} $$

 

So the correct answer is A.

Related questions

2 votes
2 votes
1 answer
1
Arjun asked Sep 23, 2019
478 views
Let $y=[\:\log_{10}3245.7\:]$ where $[ a ]$ denotes the greatest integer less than or equal to $a$. Then$y=0$$y=1$$y=2$$y=3$
0 votes
0 votes
0 answers
2
6 votes
6 votes
3 answers
3
Arjun asked Sep 23, 2019
984 views
The number of divisors of $6000$, where $1$ and $6000$ are also considered as divisors of $6000$ is$40$$50$$60$$30$
2 votes
2 votes
2 answers
4
Arjun asked Sep 23, 2019
659 views
The sum of the series $\dfrac{1}{1.2} + \dfrac{1}{2.3}+ \cdots + \dfrac{1}{n(n+1)} + \cdots $ is$1$$1/2$$0$non-existent