search
Log In
1 vote
122 views

Suppose that the function $h(x)$ is defined as $h(x)=g(f(x))$ where $g(x)$ is monotone increasing, $f(x)$ is concave, and $g’’(x)$ and $f’’(x)$ exist for all $x$. Then $h(x)$ is

  1. always concave
  2. always convex
  3. not necessarily concave
  4. None of these
in Calculus
recategorized by
122 views

Please log in or register to answer this question.

Related questions

3 votes
1 answer
1
118 views
It is given that $e^a+e^b=10$ where $a$ and $b$ are real. Then the maximum value of $(e^a+e^b+e^{a+b}+1)$ is $36$ $\infty$ $25$ $21$
asked Sep 23, 2019 in Calculus Arjun 118 views
1 vote
1 answer
2
105 views
The function $f(x) = x^{1/x}, \: x \neq 0$ has a minimum at $x=e$; a maximum at $x=e$; neither a maximum nor a minimum at $x=e$; None of the above
asked Sep 23, 2019 in Calculus Arjun 105 views
0 votes
0 answers
3
77 views
Let $f(x)=\sin x^2, \: x \in \mathbb{R}$. Then $f$ has no local minima $f$ has no local maxima $f$ has local minima at $x=0$ and $x=\pm\sqrt{(k+\frac{1}{2} ) \pi}$ for odd integers $k$ and local maxima at $x=\pm\sqrt{(k+\frac{1}{2} ) \pi}$ for even integers $k$ None of the above
asked Sep 23, 2019 in Calculus Arjun 77 views
0 votes
1 answer
4
69 views
The function $f(x)=\sin x(1+ \cos x)$ which is defined for all real values of $x$ has a maximum at $x= \pi /3$ has a maximum at $x= \pi$ has a minimum at $x= \pi /3$ has neither a maximum nor a minimum at $x=\pi/3$
asked Sep 23, 2019 in Calculus Arjun 69 views
...