search
Log In
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
2 votes
145 views

Let $\mathbb{N}=\{1,2,3, \dots\}$ be the set of natural numbers. For each $n \in \mathbb{N}$, define $A_n=\{(n+1)k, \: k \in \mathbb{N} \}$. Then $A_1 \cap A_2$ equals

  1. $A_3$
  2. $A_4$
  3. $A_5$
  4. $A_6$
in Set Theory & Algebra
recategorized by
145 views
0
Is the answer ?
0
A5 is the answer?
0
How??

1 Answer

3 votes

$A_1=\{2k: k\in \mathbb{N}\}=\{2,4,6,8,10,12,14,16,18,...,2k,...\}$

$A_2=\{3k: k\in \mathbb{N}\}=\{3,6,9,12,15,18,21,24,27,...,3k,...\}$

$\begin{align} \therefore A_1 \cap A_2&=\{6,12,18,...,6k,...\}\\&=\{6k:k \in \mathbb{N}\}\\&=\{(5+1)k:k \in \mathbb{N}\}\\&=A_5\end{align}$

So the correct answer is C.

 

0
you are correct.

Related questions

1 vote
1 answer
1
283 views
Consider the sets defined by the real solutions of the inequalities $A = \{(x,y):x^2+y^4 \leq 1\} \:\:\:\:\:\:\: B=\{(x,y):x^4+y^6 \leq 1\}$ Then $B \subseteq A$ $A \subseteq B$ Each of the sets $A – B, \: B – A$ and $A \cap B$ is non-empty none of the above
asked Sep 23, 2019 in Set Theory & Algebra Arjun 283 views
1 vote
2 answers
2
258 views
Let $A$ and $B$ be disjoint sets containing $m$ and $n$ elements respectively, and let $C=A \cup B$. Then the number of subsets $S$ (of $C$) which contains $p$ elements and also has the property that $S \cap A$ contains $q$ ... $\begin{pmatrix} m \\ p-q \end{pmatrix} \times \begin{pmatrix} n \\ q \end{pmatrix}$
asked Sep 23, 2019 in Set Theory & Algebra Arjun 258 views
2 votes
2 answers
3
383 views
Let $(1+x)^n = C_0+C_1x+C_2x^2+ \dots + C_nx^n$, $n$ being a positive integer. The value of $\left( 1+\dfrac{C_0}{C_1} \right) \left( 1+\dfrac{C_1}{C_2} \right) \cdots \left( 1+\dfrac{C_{n-1}}{C_n} \right)$ is $\left( \frac{n+1}{n+2} \right) ^n$ $ \frac{n^n}{n!} $ $\left( \frac{n}{n+1} \right) ^n$ $ \frac{(n+1)^n}{n!} $
asked Sep 23, 2019 in Combinatory Arjun 383 views
2 votes
1 answer
4
279 views
Let $a_n=\bigg( 1 – \frac{1}{\sqrt{2}} \bigg) \cdots \bigg( 1 – \frac{1}{\sqrt{n+1}} \bigg), \: n \geq 1$. Then $\underset{n \to \infty}{\lim} a_n$ equals $1$ does not exist equals $\frac{1}{\sqrt{\pi}}$ equals $0$
asked Sep 23, 2019 in Calculus Arjun 279 views
...